\name{msa} \alias{msa} \title{Relative mean square calculation function} \description{ Calculate the relative mean square values. } \usage{ msa(v) } \arguments{ \item{v}{A vector containing mean square values of all the factors.} } \value{ \item{rv}{relative mean square values for all factors.} } \references{\url{http://www.idav.ucdavis.edu/~dmrocke/}} \author{David Rocke and Geun-Cheol Lee} \seealso{ } \examples{ #library library(Biobase) library(LMGene) #data #data data(sample.eS) Smpd0 <- sample.eS # model information for(i in 1:length(varLabels(Smpd0))){ assign(paste('x', i, sep=''), as.factor(pData(Smpd0)[,i])) } fchar <- '' for(i in 1:length(varLabels(Smpd0))){ fchar <- paste(fchar, paste('x', i, sep=''), ifelse(i<length(varLabels(Smpd0)), '+', ''), sep='') } fchar2 <- paste("y ~", fchar) # run regression and ANOVAs y <- t(as.matrix(exprs(Smpd0))) formobj <- as.formula(fchar2) tmp <- lm(formobj) tmp2 <- mlm2lm(tmp, i) tmp3 <- anova(tmp2)$Mean tmp4 <- msa(tmp3) rbind(tmp3, tmp4) } \keyword{math}