\name{glpls1a.cv.error}
\alias{glpls1a.cv.error}
\title{Leave-one-out cross-validation error using IRWPLS and IRWPLSF model}
\description{
Leave-one-out cross-validation training set classification error for
fitting IRWPLS or IRWPLSF model for two group classification
}
\usage{
glpls1a.cv.error(train.X,train.y, K.prov=NULL,eps=1e-3,lmax=100,family="binomial",link="logit",br=T)
}
\arguments{
\item{train.X}{ n by p design matrix (with no
intercept term) for training set}
\item{train.y}{ response vector (0 or 1) for training set}
\item{K.prov}{ number of PLS components, default is the rank of
train.X}
\item{eps}{tolerance for convergence}
\item{lmax}{ maximum number of iteration allowed }
\item{family}{ glm family, \code{binomial} is the only relevant one here }
\item{link}{ link function, \code{logit} is the only one practically implemented now}
\item{br}{TRUE if Firth's bias reduction procedure is used}
}
\details{
}
\value{
\item{error}{LOOCV training error}
\item{error.obs}{the misclassified error observation indices}
}
\references{
\item Ding, B.Y. and Gentleman, R. (2003) Classification using generalized partial least squares.
\item Marx, B.D (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38(4): 374-381.
}
\author{Beiying Ding, Robert Gentleman}
\note{}
\seealso{ \code{\link{glpls1a.train.test.error}},
\code{\link{glpls1a.mlogit.cv.error}}, \code{\link{glpls1a}}, \code{\link{glpls1a.mlogit}},\code{\link{glpls1a.logit.all}}}
\examples{
x <- matrix(rnorm(20),ncol=2)
y <- sample(0:1,10,TRUE)
## no bias reduction
glpls1a.cv.error(x,y,br=FALSE)
## bias reduction and 1 PLS component
glpls1a.cv.error(x,y,K.prov=1, br=TRUE)
}
\keyword{regression}