\name{mestimate} \alias{mestimate} \title{Estimate for optimal fuzzifier m} \description{This function estimates an optimal setting of fuzzifier m} \usage{mestimate(eset)} \arguments{\item{eset}{object of class \dQuote{ExpressionSet}} } \details{Schwaemmle and Jensen proposed an method to estimate of \emph{m}, which was motivated by the evaluation of fuzzy clustering applied to randomized datasets. The estimated \emph{m} should give the minimum fuzzifier value which prevents clustering of randomized data. } \value{Estimate for optimal fuzzifier.} \author{Matthias E. Futschik (\url{http://itb.biologie.hu-berlin.de/~futschik})} \references{ Schwaemmle and Jensen, Bioinformatics,Vol. 26 (22), 2841-2848, 2010 } \examples{ if (interactive()){ data(yeast) # Data pre-processing yeastF <- filter.NA(yeast) yeastF <- fill.NA(yeastF) yeastF <- standardise(yeastF) #### parameter selection #### parameter selection # For fuzzifier m, we could use mestimate m1 <- mestimate(yeastF) m1 # 1.15 cl <- mfuzz(yeastF,c=20,m=m1) mfuzz.plot(yeastF,cl=cl,mfrow=c(4,5)) } } \keyword{cluster}