Authors: Martin Morgan (mtmorgan@fredhutch.org), Sonali Arora (sarora@fredhutch.org)
 Date: 30 June, 2015
Notes
BAMSpector – display gene models and underlying support across BAM (aligned read) files
app <- system.file(package="useR2015", "BAMSpector")
shiny::runApp(app)MAPlotExplorer – summarize two-group differential expression, including drill-down of individual genes. Based on CSAMA 2015 lab by Andrzej Oles.
app <- system.file(package="useR2015", "MAPlotExplorer")
shiny::runApp(app)Annotation
Standard (large) file input & manipulation, e.g., BAM files of aligned reads
Statistical analysis of differential expression
TxDb, GRanges, and GRangesListTxDb packagesTxDb.Hsapiens.UCSC.hg19.knownGene
library("TxDb.Hsapiens.UCSC.hg19.knownGene")
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
txdb
## TxDb object:
## # Db type: TxDb
## # Supporting package: GenomicFeatures
## # Data source: UCSC
## # Genome: hg19
## # Organism: Homo sapiens
## # UCSC Table: knownGene
## # Resource URL: http://genome.ucsc.edu/
## # Type of Gene ID: Entrez Gene ID
## # Full dataset: yes
## # miRBase build ID: GRCh37
## # transcript_nrow: 82960
## # exon_nrow: 289969
## # cds_nrow: 237533
## # Db created by: GenomicFeatures package from Bioconductor
## # Creation time: 2015-03-19 13:55:51 -0700 (Thu, 19 Mar 2015)
## # GenomicFeatures version at creation time: 1.19.32
## # RSQLite version at creation time: 1.0.0
## # DBSCHEMAVERSION: 1.1
methods(class=class(txdb))
##  [1] $                      $<-                    annotatedDataFrameFrom as.list               
##  [5] asBED                  asGFF                  assayData              assayData<-           
##  [9] cds                    cdsBy                  cdsByOverlaps          coerce                
## [13] columns                combine                contents               dbconn                
## [17] dbfile                 dbInfo                 dbmeta                 dbschema              
## [21] disjointExons          distance               exons                  exonsBy               
## [25] exonsByOverlaps        ExpressionSet          extractUpstreamSeqs    featureNames          
## [29] featureNames<-         fiveUTRsByTranscript   genes                  initialize            
## [33] intronsByTranscript    isActiveSeq            isActiveSeq<-          isNA                  
## [37] keys                   keytypes               mapIds                 mappedkeys            
## [41] mapToTranscripts       metadata               microRNAs              nhit                  
## [45] organism               promoters              revmap                 sample                
## [49] sampleNames            sampleNames<-          saveDb                 select                
## [53] seqinfo                seqinfo<-              seqlevels0             show                  
## [57] species                storageMode            storageMode<-          threeUTRsByTranscript 
## [61] transcripts            transcriptsBy          transcriptsByOverlaps  tRNAs                 
## [65] updateObject          
## see '?methods' for accessing help and source code
TxDb objects
dbfile(txdb)GenomicFeatures::makeTxDbFrom*()Accessing gene models
exons(), transcripts(), genes(), cds() (coding sequence)promoters() & friendsexonsBy() & friends – exons by gene, transcript, …keytypes(), columns(), keys(), select(), mapIds()GRangesexons(): GRanges
exons(txdb)
## GRanges object with 289969 ranges and 1 metadata column:
##            seqnames               ranges strand   |   exon_id
##               <Rle>            <IRanges>  <Rle>   | <integer>
##        [1]     chr1       [11874, 12227]      +   |         1
##        [2]     chr1       [12595, 12721]      +   |         2
##        [3]     chr1       [12613, 12721]      +   |         3
##        [4]     chr1       [12646, 12697]      +   |         4
##        [5]     chr1       [13221, 14409]      +   |         5
##        ...      ...                  ...    ... ...       ...
##   [289965]     chrY [27607404, 27607432]      -   |    277746
##   [289966]     chrY [27635919, 27635954]      -   |    277747
##   [289967]     chrY [59358329, 59359508]      -   |    277748
##   [289968]     chrY [59360007, 59360115]      -   |    277749
##   [289969]     chrY [59360501, 59360854]      -   |    277750
##   -------
##   seqinfo: 93 sequences (1 circular) from hg19 genome
methods(class="GRanges"): 100’s!
GRanges Algebra
shift(), narrow(), flank(), promoters(), resize(), restrict(), trim()?"intra-range-methods"range(), reduce(), gaps(), disjoin()coverage() (!)?"inter-range-methods"findOverlaps(), countOverlaps(), …, %over%, %within%, %outside%; union(), intersect(), setdiff(), punion(), pintersect(), psetdiff()GRangesListexonsBy(): GRangesList
exonsBy(txdb, "tx")
## GRangesList object of length 82960:
## $1 
## GRanges object with 3 ranges and 3 metadata columns:
##       seqnames         ranges strand |   exon_id   exon_name exon_rank
##          <Rle>      <IRanges>  <Rle> | <integer> <character> <integer>
##   [1]     chr1 [11874, 12227]      + |         1        <NA>         1
##   [2]     chr1 [12613, 12721]      + |         3        <NA>         2
##   [3]     chr1 [13221, 14409]      + |         5        <NA>         3
## 
## $2 
## GRanges object with 3 ranges and 3 metadata columns:
##       seqnames         ranges strand | exon_id exon_name exon_rank
##   [1]     chr1 [11874, 12227]      + |       1      <NA>         1
##   [2]     chr1 [12595, 12721]      + |       2      <NA>         2
##   [3]     chr1 [13403, 14409]      + |       6      <NA>         3
## 
## $3 
## GRanges object with 3 ranges and 3 metadata columns:
##       seqnames         ranges strand | exon_id exon_name exon_rank
##   [1]     chr1 [11874, 12227]      + |       1      <NA>         1
##   [2]     chr1 [12646, 12697]      + |       4      <NA>         2
##   [3]     chr1 [13221, 14409]      + |       5      <NA>         3
## 
## ...
## <82957 more elements>
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
GRanges / GRangesList are incredibly useful
Many biologically interesting questions represent operations on ranges
GenomicRanges::summarizeOverlaps()GenomicRanges::nearest(), ChIPseekerOrgDblibrary(org.Hs.eg.db)
org.Hs.eg.db
## OrgDb object:
## | DBSCHEMAVERSION: 2.1
## | Db type: OrgDb
## | Supporting package: AnnotationDbi
## | DBSCHEMA: HUMAN_DB
## | ORGANISM: Homo sapiens
## | SPECIES: Human
## | EGSOURCEDATE: 2015-Mar17
## | EGSOURCENAME: Entrez Gene
## | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
## | CENTRALID: EG
## | TAXID: 9606
## | GOSOURCENAME: Gene Ontology
## | GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/
## | GOSOURCEDATE: 20150314
## | GOEGSOURCEDATE: 2015-Mar17
## | GOEGSOURCENAME: Entrez Gene
## | GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
## | KEGGSOURCENAME: KEGG GENOME
## | KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes
## | KEGGSOURCEDATE: 2011-Mar15
## | GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)
## | GPSOURCEURL: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19
## | GPSOURCEDATE: 2010-Mar22
## | ENSOURCEDATE: 2015-Mar13
## | ENSOURCENAME: Ensembl
## | ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
## | UPSOURCENAME: Uniprot
## | UPSOURCEURL: http://www.UniProt.org/
## | UPSOURCEDATE: Tue Mar 17 18:48:15 2015
## 
## Please see: help('select') for usage information
OrgDb objects
TxDbkeytypes(), columns(), keys(), select(), mapIds()select()
Specification of key type
select(org.Hs.eg.db, c("BRCA1", "PTEN"), c("ENTREZID", "GENENAME"), "SYMBOL")
##   SYMBOL ENTREZID                       GENENAME
## 1  BRCA1      672   breast cancer 1, early onset
## 2   PTEN     5728 phosphatase and tensin homolog
keytypes(org.Hs.eg.db)
##  [1] "ENTREZID"     "PFAM"         "IPI"          "PROSITE"      "ACCNUM"       "ALIAS"       
##  [7] "ENZYME"       "MAP"          "PATH"         "PMID"         "REFSEQ"       "SYMBOL"      
## [13] "UNIGENE"      "ENSEMBL"      "ENSEMBLPROT"  "ENSEMBLTRANS" "GENENAME"     "UNIPROT"     
## [19] "GO"           "EVIDENCE"     "ONTOLOGY"     "GOALL"        "EVIDENCEALL"  "ONTOLOGYALL" 
## [25] "OMIM"         "UCSCKG"
columns(org.Hs.eg.db)
##  [1] "ENTREZID"     "PFAM"         "IPI"          "PROSITE"      "ACCNUM"       "ALIAS"       
##  [7] "CHR"          "CHRLOC"       "CHRLOCEND"    "ENZYME"       "MAP"          "PATH"        
## [13] "PMID"         "REFSEQ"       "SYMBOL"       "UNIGENE"      "ENSEMBL"      "ENSEMBLPROT" 
## [19] "ENSEMBLTRANS" "GENENAME"     "UNIPROT"      "GO"           "EVIDENCE"     "ONTOLOGY"    
## [25] "GOALL"        "EVIDENCEALL"  "ONTOLOGYALL"  "OMIM"         "UCSCKG"Related functionality
mapIds() – special case for mapping from 1 identifier to anotherOrganismDb objects: combined org.*, TxDb.*, and other annotation resources for easy access
library(Homo.sapiens)
select(Homo.sapiens, c("BRCA1", "PTEN"), 
       c("TXNAME", "TXCHROM", "TXSTART", "TXEND"), 
       "SYMBOL")
##    SYMBOL     TXNAME TXCHROM  TXSTART    TXEND
## 1   BRCA1 uc010whl.2   chr17 41196312 41276132
## 2   BRCA1 uc002icp.4   chr17 41196312 41277340
## 3   BRCA1 uc010whm.2   chr17 41196312 41277340
## 4   BRCA1 uc002icu.3   chr17 41196312 41277468
## 5   BRCA1 uc010cyx.3   chr17 41196312 41277468
## 6   BRCA1 uc002icq.3   chr17 41196312 41277500
## 7   BRCA1 uc002ict.3   chr17 41196312 41277500
## 8   BRCA1 uc010whn.2   chr17 41196312 41277500
## 9   BRCA1 uc010who.3   chr17 41196312 41277500
## 10  BRCA1 uc010whp.2   chr17 41196312 41322420
## 11  BRCA1 uc010whq.1   chr17 41215350 41256973
## 12  BRCA1 uc002idc.1   chr17 41215350 41277468
## 13  BRCA1 uc010whr.1   chr17 41215350 41277468
## 14  BRCA1 uc002idd.3   chr17 41243117 41276132
## 15  BRCA1 uc002ide.1   chr17 41243452 41256973
## 16  BRCA1 uc010cyy.1   chr17 41243452 41277340
## 17  BRCA1 uc010whs.1   chr17 41243452 41277468
## 18  BRCA1 uc010cyz.2   chr17 41243452 41277500
## 19  BRCA1 uc010cza.2   chr17 41243452 41277500
## 20  BRCA1 uc010wht.1   chr17 41243452 41277500
## 21   PTEN uc001kfb.3   chr10 89623195 89728532
## 22   PTEN uc021pvw.1   chr10 89623195 89728532biomaRt, AnnotationHubhttp://biomart.org; Bioconductor package biomaRt
## NEEDS INTERNET ACCESS !!
library(biomaRt)
head(listMarts(), 3)                      ## list marts
head(listDatasets(useMart("ensembl")), 3) ## mart datasets
ensembl <-                                ## fully specified mart
    useMart("ensembl", dataset = "hsapiens_gene_ensembl")
head(listFilters(ensembl), 3)             ## filters
myFilter <- "chromosome_name"
substr(filterOptions(myFilter, ensembl), 1, 50) ## return values
myValues <- c("21", "22")
head(listAttributes(ensembl), 3)          ## attributes
myAttributes <- c("ensembl_gene_id","chromosome_name")
## assemble and query the mart
res <- getBM(attributes =  myAttributes, filters =  myFilter,
             values =  myValues, mart = ensembl)
Other internet resources
Example: Ensembl ‘GTF’ files to R / Bioconductor GRanges and TxDb
library(AnnotationHub)
hub <- AnnotationHub()
hub
query(hub, c("Ensembl", "80", "gtf"))
## ensgtf = display(hub)                   # visual choice
hub["AH47107"]
gtf <- hub[["AH47107"]]
gtf
txdb <- GenomicFeatures::makeTxDbFromGRanges(gtf)
Example: non-model organism OrgDb packages
library(AnnotationHub)
hub <- AnnotationHub()
query(hub, "OrgDb")
Example: Map Roadmap epigenomic marks to hg28
Roadmap BED file as GRanges
library(AnnotationHub)
hub <- AnnotationHub()
query(hub , c("EpigenomeRoadMap", "E126", "H3K4ME2"))
E126 <- hub[["AH29817"]]UCSC ‘liftOver’ file to map coordinates
query(hub , c("hg19", "hg38", "chainfile"))
chain <- hub[["AH14150"]]lift over – possibly one-to-many mapping, so GRanges to GRangesList
library(rtracklayer)
E126hg38 <- liftOver(E126, chain)
E126hg38GenomicAlignmentsRecall: overall workflow
BAM files of aligned reads
Header
@HD     VN:1.0  SO:coordinate
@SQ     SN:chr1 LN:249250621
@SQ     SN:chr10        LN:135534747
@SQ     SN:chr11        LN:135006516
...
@SQ     SN:chrY LN:59373566
@PG     ID:TopHat       VN:2.0.8b       CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastqID, flag, alignment and mate
ERR127306.7941162       403     chr14   19653689        3       72M             =       19652348        -1413  ...
ERR127306.22648137      145     chr14   19653692        1       72M             =       19650044        -3720  ...Sequence and quality
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC        *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG        '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****Tags
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:2  CC:Z:chr22      CP:i:16189276   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:3  CC:Z:=  CP:i:19921600   HI:i:0Typically, sorted (by position) and indexed (‘.bai’ files)
Use an example BAM file (fl could be the path to your own BAM file)
## example BAM data
library(RNAseqData.HNRNPC.bam.chr14)
## one BAM file
fl <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]
## Let R know that this is a BAM file, not just a character vector
library(Rsamtools)
bfl <- BamFile(fl)Input the data into R
aln <- readGAlignments(bfl)
aln
## GAlignments object with 800484 alignments and 0 metadata columns:
##            seqnames strand       cigar    qwidth     start       end     width     njunc
##               <Rle>  <Rle> <character> <integer> <integer> <integer> <integer> <integer>
##        [1]    chr14      +         72M        72  19069583  19069654        72         0
##        [2]    chr14      +         72M        72  19363738  19363809        72         0
##        [3]    chr14      -         72M        72  19363755  19363826        72         0
##        [4]    chr14      +         72M        72  19369799  19369870        72         0
##        [5]    chr14      -         72M        72  19369828  19369899        72         0
##        ...      ...    ...         ...       ...       ...       ...       ...       ...
##   [800480]    chr14      -         72M        72 106989780 106989851        72         0
##   [800481]    chr14      +         72M        72 106994763 106994834        72         0
##   [800482]    chr14      -         72M        72 106994819 106994890        72         0
##   [800483]    chr14      +         72M        72 107003080 107003151        72         0
##   [800484]    chr14      -         72M        72 107003171 107003242        72         0
##   -------
##   seqinfo: 93 sequences from an unspecified genome
readGAlignmentPairs() / readGAlignmentsList() if paired-end datamethods(class=class(aln))
##   [1] !=                     [                      [<-                    %in%                  
##   [5] <                      <=                     ==                     >                     
##   [9] >=                     aggregate              anyNA                  append                
##  [13] as.character           as.complex             as.data.frame          as.env                
##  [17] as.integer             as.list                as.logical             as.numeric            
##  [21] as.raw                 c                      cigar                  coerce                
##  [25] compare                countOverlaps          coverage               duplicated            
##  [29] elementMetadata        elementMetadata<-      end                    eval                  
##  [33] export                 extractROWS            findCompatibleOverlaps findOverlaps          
##  [37] findSpliceOverlaps     granges                grglist                head                  
##  [41] high2low               junctions              length                 mapCoords             
##  [45] mapFromAlignments      mapToAlignments        match                  mcols                 
##  [49] mcols<-                metadata               metadata<-             mstack                
##  [53] names                  names<-                narrow                 njunc                 
##  [57] NROW                   overlapsAny            parallelSlotNames      pintersect            
##  [61] pmapCoords             pmapFromAlignments     pmapToAlignments       qnarrow               
##  [65] qwidth                 ranges                 rank                   relist                
##  [69] relistToClass          rename                 rep                    rep.int               
##  [73] replaceROWS            rev                    rglist                 rname                 
##  [77] rname<-                ROWNAMES               seqinfo                seqinfo<-             
##  [81] seqlevelsInUse         seqnames               seqnames<-             shiftApply            
##  [85] show                   showAsCell             sort                   split                 
##  [89] split<-                start                  strand                 strand<-              
##  [93] subset                 subsetByOverlaps       summarizeOverlaps      table                 
##  [97] tail                   tapply                 unique                 update                
## [101] updateObject           values                 values<-               width                 
## [105] window                 window<-               with                   xtfrm                 
## see '?methods' for accessing help and source codeCaveat emptor: BAM files are large. Normally you will restrict the input to particular genomic ranges, or iterate through the BAM file. Key Bioconductor functions (e.g., GenomicAlignments::summarizeOverlaps() do this data management step for you. See next section!
BiocParallel, GenomicFilesScanBamParam()which: genomic ranges of interestwhat: ‘columns’ of BAM file, e.g., ‘seq’, ‘flag’BamFile(..., yieldSize=100000)Iterative programming model
Use GenomicFiles::reduceByYield()
library(GenomicFiles)
yield <- function(bfl) {
    ## input a chunk of alignments
    library(GenomicAlignments)
    readGAlignments(bfl, param=ScanBamParam(what="seq"))
}
map <- function(aln) { 
    ## Count G or C nucleotides per read
    library(Biostrings)
    gc <- letterFrequency(mcols(aln)$seq, "GC")
    ## Summarize number of reads with 0, 1, ... G or C nucleotides
    tabulate(1 + gc, 73)                # max. read length: 72
}
reduce <- `+`Example
library(RNAseqData.HNRNPC.bam.chr14)
fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES
bf <- BamFile(fls[1], yieldSize=100000)
gc <- reduceByYield(bf, yield, map, reduce)
plot(gc, type="h",
     xlab="GC Content per Aligned Read", ylab="Number of Reads")
Many problems are embarassingly parallel – lapply()-like – especially in bioinformatics where parallel evaluation is across files
Example: GC content in several BAM files
library(BiocParallel)
gc <- bplapply(BamFileList(fls), reduceByYield, yield, map, reduce)
library(ggplot2)
df <- stack(as.data.frame(lapply(gc, cumsum)))
df$GC <- 0:72
ggplot(df, aes(x=GC, y=values)) + geom_line(aes(colour=ind)) +
    xlab("Number of GC Nucleotides per Read") +
    ylab("Number of Reads")
DESeq2GenomicAlignments::summarizeOverlaps()More extensive material
Starting point
Normalization
Error model
Limited sample size
Multiple testing
Filter genes to exclude from testing using a priori criteria
Three types of information
matrix of counts of reads overlapping regions of interestdata.frame summarizing samples used in the analysisGenomicRanges describing the regions of interestSummarizedExperiment coordinates this information
library("airway")
data(airway)
airway
## class: SummarizedExperiment 
## dim: 64102 8 
## exptData(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## main components of SummarizedExperiment
head(assay(airway))
##                 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003        679        448        873        408       1138       1047        770
## ENSG00000000005          0          0          0          0          0          0          0
## ENSG00000000419        467        515        621        365        587        799        417
## ENSG00000000457        260        211        263        164        245        331        233
## ENSG00000000460         60         55         40         35         78         63         76
## ENSG00000000938          0          0          2          0          1          0          0
##                 SRR1039521
## ENSG00000000003        572
## ENSG00000000005          0
## ENSG00000000419        508
## ENSG00000000457        229
## ENSG00000000460         60
## ENSG00000000938          0
colData(airway)
## DataFrame with 8 rows and 9 columns
##            SampleName     cell      dex    albut        Run avgLength Experiment    Sample
##              <factor> <factor> <factor> <factor>   <factor> <integer>   <factor>  <factor>
## SRR1039508 GSM1275862   N61311    untrt    untrt SRR1039508       126  SRX384345 SRS508568
## SRR1039509 GSM1275863   N61311      trt    untrt SRR1039509       126  SRX384346 SRS508567
## SRR1039512 GSM1275866  N052611    untrt    untrt SRR1039512       126  SRX384349 SRS508571
## SRR1039513 GSM1275867  N052611      trt    untrt SRR1039513        87  SRX384350 SRS508572
## SRR1039516 GSM1275870  N080611    untrt    untrt SRR1039516       120  SRX384353 SRS508575
## SRR1039517 GSM1275871  N080611      trt    untrt SRR1039517       126  SRX384354 SRS508576
## SRR1039520 GSM1275874  N061011    untrt    untrt SRR1039520       101  SRX384357 SRS508579
## SRR1039521 GSM1275875  N061011      trt    untrt SRR1039521        98  SRX384358 SRS508580
##               BioSample
##                <factor>
## SRR1039508 SAMN02422669
## SRR1039509 SAMN02422675
## SRR1039512 SAMN02422678
## SRR1039513 SAMN02422670
## SRR1039516 SAMN02422682
## SRR1039517 SAMN02422673
## SRR1039520 SAMN02422683
## SRR1039521 SAMN02422677
rowRanges(airway)
## GRangesList object of length 64102:
## $ENSG00000000003 
## GRanges object with 17 ranges and 2 metadata columns:
##        seqnames               ranges strand   |   exon_id       exon_name
##           <Rle>            <IRanges>  <Rle>   | <integer>     <character>
##    [1]        X [99883667, 99884983]      -   |    667145 ENSE00001459322
##    [2]        X [99885756, 99885863]      -   |    667146 ENSE00000868868
##    [3]        X [99887482, 99887565]      -   |    667147 ENSE00000401072
##    [4]        X [99887538, 99887565]      -   |    667148 ENSE00001849132
##    [5]        X [99888402, 99888536]      -   |    667149 ENSE00003554016
##    ...      ...                  ...    ... ...       ...             ...
##   [13]        X [99890555, 99890743]      -   |    667156 ENSE00003512331
##   [14]        X [99891188, 99891686]      -   |    667158 ENSE00001886883
##   [15]        X [99891605, 99891803]      -   |    667159 ENSE00001855382
##   [16]        X [99891790, 99892101]      -   |    667160 ENSE00001863395
##   [17]        X [99894942, 99894988]      -   |    667161 ENSE00001828996
## 
## ...
## <64101 more elements>
## -------
## seqinfo: 722 sequences (1 circular) from an unspecified genome
## e.g., coordinated subset to include dex 'trt'  samples
airway[, airway$dex == "trt"]
## class: SummarizedExperiment 
## dim: 64102 4 
## exptData(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## e.g., keep only rows with non-zero counts
airway <- airway[rowSums(assay(airway)) != 0, ]
Add experimental design information to the SummarizedExperiment
library(DESeq2)
dds <- DESeqDataSet(airway, design = ~ cell + dex)Peform the essential work flow steps
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
dds
## class: DESeqDataSet 
## dim: 33469 8 
## exptData(1): ''
## assays(3): counts mu cooks
## rownames(33469): ENSG00000000003 ENSG00000000419 ... ENSG00000273492 ENSG00000273493
## rowRanges metadata column names(46): baseMean baseVar ... deviance maxCooks
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(10): SampleName cell ... BioSample sizeFactorExtract results
res <- results(dds)
res
## log2 fold change (MAP): dex untrt vs trt 
## Wald test p-value: dex untrt vs trt 
## DataFrame with 33469 rows and 6 columns
##                    baseMean log2FoldChange      lfcSE       stat       pvalue        padj
##                   <numeric>      <numeric>  <numeric>  <numeric>    <numeric>   <numeric>
## ENSG00000000003 708.6021697     0.37424998 0.09873107  3.7906000 0.0001502838 0.001164352
## ENSG00000000419 520.2979006    -0.20215550 0.10929899 -1.8495642 0.0643763883 0.181989704
## ENSG00000000457 237.1630368    -0.03624826 0.13684258 -0.2648902 0.7910940570 0.901775018
## ENSG00000000460  57.9326331     0.08523370 0.24654400  0.3457140 0.7295576915 0.868545776
## ENSG00000000938   0.3180984     0.11555962 0.14630523  0.7898530 0.4296136448          NA
## ...                     ...            ...        ...        ...          ...         ...
## ENSG00000273487   8.1632350    -0.56331132  0.3736236 -1.5076976    0.1316319   0.3066033
## ENSG00000273488   8.5844790    -0.10805538  0.3684853 -0.2932420    0.7693372   0.8900081
## ENSG00000273489   0.2758994    -0.11282164  0.1424265 -0.7921393    0.4282794          NA
## ENSG00000273492   0.1059784     0.07644378  0.1248627  0.6122225    0.5403906          NA
## ENSG00000273493   0.1061417     0.07628747  0.1250713  0.6099516    0.5418939          NAshinyWriting a shiny app
A simple directory with user interface (ui.R) and server (server.R) R scripts
User interface, file ui.R
library(shiny)
library(RNAseqData.HNRNPC.bam.chr14)
library(Homo.sapiens)
## Get all SYMBOLs on chr14
symbols <- keys(Homo.sapiens, keytype="SYMBOL")
map <- select(Homo.sapiens, symbols, "TXCHROM", "SYMBOL")
symchoices <- sort(unique(map$SYMBOL[map$TXCHROM %in% "chr14"]))
## Possible BAM files
bamchoices <- basename(RNAseqData.HNRNPC.bam.chr14_BAMFILES)
## Define the user interface
shinyUI(fluidPage(
    ## Application title
    titlePanel("BAMSpector: Reads Supporting Gene Models"),
    sidebarLayout(
        sidebarPanel(
            ## input gene symbol (fancy: select from available)
            selectInput("symbol", "Gene Symbol", symchoices),
            ## input path to BAM file
            selectInput("bam", "BAM File", bamchoices, multiple=TRUE)),
        ## Show a plot of the generated distribution
        mainPanel(plotOutput("tracksPlot")))
    ))Server, file server.R
## load required libraries
library(shiny)
library(RNAseqData.HNRNPC.bam.chr14)
library(Homo.sapiens)
library(Gviz)
## where are the BAM files?
dirname <- unique(dirname(RNAseqData.HNRNPC.bam.chr14_BAMFILES))
## What are the ranges of each gene?
ranges <- genes(Homo.sapiens, columns="SYMBOL")
ranges$SYMBOL <- unlist(ranges$SYMBOL)
## Create a representation of each gene region
genes <- GeneRegionTrack(TxDb.Hsapiens.UCSC.hg19.knownGene,
                         chromosome="chr14")
shinyServer(function(input, output) {
    output$tracksPlot <- renderPlot({
        if (length(input$bam) > 0) {
            ## coverage on each BAM file
            bam <- file.path(dirname, input$bam)
            coverage <- Map(DataTrack,
                range = bam, name = bam,
                MoreArgs=list(type = 'histogram',
                    window = -1, genome = 'hg19',
                    chromosome = 'chr14'))
        } else {
            coverage <- list()
        }
        ## Select the correct range
        range <- ranges[match(input$symbol, ranges$SYMBOL)]
        ## plot the GeneRegionTrack and coverage
        plotTracks(c(list(genes), coverage),
                   from = start(range), to=end(range),
                   chr='chr14', windowSize = 30)
    })
})Application
shiny::runApp()Merits of Bioconductor for High-Throughput Sequence Analysis
Acknowledgements
Core (Seattle): Sonali Arora, Marc Carlson, Nate Hayden, Jim Hester, Valerie Obenchain, Hervé Pagès, Paul Shannon, Dan Tenenbaum.
The research reported in this presentation was supported by the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health under Award numbers U24CA180996 and U41HG004059, and the National Science Foundation under Award number 1247813. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.
BioC 2015 Annual Conference, Seattle, WA, 20-22 July.
sessionInfo()sessionInfo()
## R version 3.2.1 Patched (2015-06-19 r68553)
## Platform: x86_64-unknown-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.2 LTS
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
##  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] shiny_0.12.0                            ggplot2_1.0.1                          
##  [3] airway_0.102.0                          RNAseqData.HNRNPC.bam.chr14_0.6.0      
##  [5] Homo.sapiens_1.1.2                      TxDb.Hsapiens.UCSC.hg19.knownGene_3.1.2
##  [7] org.Hs.eg.db_3.1.2                      GO.db_3.1.2                            
##  [9] RSQLite_1.0.0                           DBI_0.3.1                              
## [11] OrganismDbi_1.10.0                      GenomicFeatures_1.20.1                 
## [13] AnnotationDbi_1.30.1                    Biobase_2.28.0                         
## [15] GenomicFiles_1.4.0                      BiocParallel_1.2.2                     
## [17] rtracklayer_1.28.4                      GenomicAlignments_1.4.1                
## [19] Rsamtools_1.20.4                        DESeq2_1.8.1                           
## [21] RcppArmadillo_0.5.200.1.0               Rcpp_0.11.6                            
## [23] GenomicRanges_1.20.5                    GenomeInfoDb_1.4.0                     
## [25] Biostrings_2.36.1                       XVector_0.8.0                          
## [27] IRanges_2.2.4                           S4Vectors_0.6.0                        
## [29] BiocGenerics_0.14.0                     AnnotationHub_2.0.2                    
## [31] BiocStyle_1.6.0                         BiocInstaller_1.18.3                   
## 
## loaded via a namespace (and not attached):
##  [1] httr_0.6.1                   splines_3.2.1                Formula_1.2-1               
##  [4] interactiveDisplayBase_1.6.0 latticeExtra_0.6-26          RBGL_1.44.0                 
##  [7] yaml_2.1.13                  lattice_0.20-31              digest_0.6.8                
## [10] RColorBrewer_1.1-2           colorspace_1.2-6             htmltools_0.2.6             
## [13] httpuv_1.3.2                 plyr_1.8.2                   XML_3.98-1.2                
## [16] biomaRt_2.24.0               genefilter_1.50.0            zlibbioc_1.14.0             
## [19] xtable_1.7-4                 snow_0.3-13                  scales_0.2.4                
## [22] annotate_1.46.0              nnet_7.3-9                   proto_0.3-10                
## [25] survival_2.38-2              magrittr_1.5                 mime_0.3                    
## [28] evaluate_0.7                 MASS_7.3-41                  foreign_0.8-63              
## [31] graph_1.46.0                 tools_3.2.1                  formatR_1.2                 
## [34] stringr_1.0.0                munsell_0.4.2                locfit_1.5-9.1              
## [37] cluster_2.0.2                lambda.r_1.1.7               futile.logger_1.4.1         
## [40] grid_3.2.1                   RCurl_1.95-4.6               labeling_0.3                
## [43] bitops_1.0-6                 rmarkdown_0.6.1              codetools_0.2-11            
## [46] gtable_0.1.2                 reshape2_1.4.1               R6_2.0.1                    
## [49] gridExtra_0.9.1              knitr_1.10.5                 Hmisc_3.16-0                
## [52] futile.options_1.0.0         stringi_0.4-1                geneplotter_1.46.0          
## [55] rpart_4.1-9                  acepack_1.3-3.3