Martin Morgan, Hervé Pagès
February 4, 2015
logical(), integer(), numeric(), character(), …,
matrix(), array()list(), data.frame(), …, new.env()NA, factor(), ~ formula, …S3 classes
list() with class() attribute; linear
class hierarchy, single-dispatch.foo (body: UseMethod()) and methods foo.A?foo, ?foo.Amethods(), methods(class=<...>)x <- rnorm(1000)
y <- x + rnorm(1000, .5)
df <- data.frame(x=x, y=y)
fit <- lm(y ~ x, df)
class(fit)
## [1] "lm"
methods(class=class(fit))
##  [1] add1.lm*           alias.lm*          anova.lm*         
##  [4] case.names.lm*     confint.lm         cooks.distance.lm*
##  [7] deviance.lm*       dfbeta.lm*         dfbetas.lm*       
## [10] drop1.lm*          dummy.coef.lm      effects.lm*       
## [13] extractAIC.lm*     family.lm*         formula.lm*       
## [16] hatvalues.lm*      influence.lm*      kappa.lm          
## [19] labels.lm*         logLik.lm*         model.frame.lm*   
## [22] model.matrix.lm    nobs.lm*           plot.lm*          
## [25] predict.lm         print.lm*          proj.lm*          
## [28] qr.lm*             residuals.lm       rstandard.lm*     
## [31] rstudent.lm*       simulate.lm*       summary.lm        
## [34] variable.names.lm* vcov.lm*          
## 
##    Non-visible functions are asterisked
methods(anova)
## [1] anova.glm*     anova.glmlist* anova.lm*      anova.lmlist* 
## [5] anova.loess*   anova.mlm*     anova.nls*    
## 
##    Non-visible functions are asterisked
plot(y ~ x, df)
abline(fit, col="red", lwd=2)
 
S4 classes
setClass(), multiple inheritance, multiple
dispatchfoo and associated methods (showMethods("foo"))?foo, method?foo,A, class?ADiscovery: showMethods("foo"), showMethods(classes="A",
where=search())
Example
suppressPackageStartupMessages({
    library(IRanges)
})
start <- as.integer(runif(1000, 1, 1e4))
width <- as.integer(runif(length(start), 50, 100))
ir <- IRanges(start, width=width)
coverage(ir)
## integer-Rle of length 10092 with 1743 runs
##   Lengths:  7  8  6  9 10  4  2  1 18 13 ...  2  3 11  2 16 12 11  9 16 17
##   Values :  0  1  2  3  4  5  6  7  8  7 ...  8  9  8  7  6  5  4  3  2  1
findOverlaps(ir)
## Hits object with 15638 hits and 0 metadata columns:
##           queryHits subjectHits
##           <integer>   <integer>
##       [1]         1         693
##       [2]         1         594
##       [3]         1         814
##       [4]         1         229
##       [5]         1         178
##       ...       ...         ...
##   [15634]      1000         204
##   [15635]      1000         748
##   [15636]      1000         291
##   [15637]      1000          14
##   [15638]      1000         821
##   -------
##   queryLength: 1000
##   subjectLength: 1000
showMethods("coverage")
## Function: coverage (package IRanges)
## x="IRanges"
##     (inherited from: x="Ranges")
## x="RangedData"
## x="Ranges"
## x="RangesList"
## x="Views"
showMethods(classes=class(ir), where=search())
Notes
suppressPackageStartupMessages({
    library(GenomicRanges)
})
showMethods("coverage")
## Function: coverage (package IRanges)
## x="GRangesList"
## x="GenomicRanges"
## x="RangedData"
## x="Ranges"
## x="RangesList"
## x="SummarizedExperiment"
## x="Views"
GRangesSummarizedExperimentexample(findOverlaps)browseVignettes("IRanges")Sequences
DNAString / DNAStringSet
suppressPackageStartupMessages({
  library(Biostrings)
})
data(phiX174Phage)
m <- consensusMatrix(phiX174Phage)[1:4,]
polymorphic <- colSums(m > 0) > 1
endoapply(phiX174Phage, `[`, polymorphic)
##   A DNAStringSet instance of length 6
##     width seq                                          names               
## [1]     9 GGAACCAGC                                    Genbank
## [2]     9 AAAGCTAGC                                    RF70s
## [3]     9 AAAGCTAGC                                    SS78
## [4]     9 GAGACTAAT                                    Bull
## [5]     9 AAGACTGAC                                    G97
## [6]     9 AAAGTTAGC                                    NEB03
Genomic Ranges
GRanges
GRangesList
Integrating sample, range and assay data
SummarizedExperiment
Biostirings – Sequences
GenomicRanges – Ranges
SummarizedExperimentBiocParallel – Parallel processing
biocViews for discovery.
RNA-seq
ChIP-seq
Variants
Copy number
Methylation
Expression and other arrays