Package ‘transmogR’

November 14, 2025
Type Package

Title Modify a set of reference sequences using a set of variants
Version 1.6.0

Description transmogR provides the tools needed to crate a new reference
genome or reference transcriptome, using a set of variants. Variants can
be any combination of SNPs, Insertions and Deletions. The intended
use-case is to enable creation of variant-modified reference
transcriptomes for incorporation into transcriptomic pseudo-alignment
workflows, such as salmon.

License GPL-3
Encoding UTF-8

URL https://github.com/smped/transmogR

BugReports https://github.com/smped/transmogR/issues
Depends R (>=4.1.0), Biostrings, GenomicRanges

Imports BSgenome, data.table, Seqinfo, GenomicFeatures, ggplot2 (>=
4.0.0), IRanges, jsonlite, matrixStats, methods, parallel,
patchwork, scales, stats, S4Vectors, SummarizedExperiment,
VariantAnnotation

Suggests BiocStyle, BSgenome.Hsapiens.UCSC.hg38, edgeR, extraChIPs,
InteractionSet, knitr, readr, rmarkdown, rtracklayer,
SimpleUpset, testthat (>= 3.0.0)

biocViews Alignment, Genomic Variation, Sequencing,
TranscriptomeVariant, VariantAnnotation

BiocType Software

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/transmogR
git_branch RELEASE_3_22

git_last_commit 7065211

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

https://github.com/smped/transmogR
https://github.com/smped/transmogR/issues

transmogR-package

Date/Publication 2025-11-13
Author Stevie Pederson [aut, cre] (ORCID:

<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stevie Pederson <stephen.pederson.au@gmail.com>

Contents
transmogR-package L 2
cleanVariants e 3
digestSalmon L 4
genomogrify 6
indelcator 9
overlapsByVar L 10
OWL e 11
PATY . L e e e e 12
shiftByVar oo 13
sjFromExons 14
transmogrify e e e e e 16
upsetVarByCol 18
varTags L 20
varTypes e e e e e 21

Index 23

transmogR-package transmogR: Create a variant-modified reference transcriptome
Description

The package transmogR has been designed for creation of a variant-modified reference transcrip-
tome

Details

The package transmogR provides two primary functions for modifying complete transcriptomes or
genomes:

* transmogrify() for incorporating the supplied variants into transcriptomic sequences, and

» genomogrify() for incorporating the supplied variants into genomic sequences, ideally to be

passed as decoy sequences to a tool such as salmon.

The main functions rely on lower-level functions such as:

* owl() which over-writes letters (i.e. SNPs) within a sequence, and

* indelcator () which incorporates InDels into an individual sequence

Additional utility functions are provided which allow characterisation and exploration of any set of
variants:

* overlapsByVar() counts the variants which overlap sets of GenomicRanges, first splitting

the variants into SNV, Insertions and Deletions

https://orcid.org/0000-0001-8197-3303

clean Variants 3

* parY() returns the pseudo-autosomal regions for a chosen genome build as a GenomicRanges
object

* upsetVarByCol () produces an UpSet plot counting how many unique IDs are impacted by
a set o variants. IDs can represent any column in the supplied ranges, such as gene_id or
transcript_id

e varTypes() classifies a set of variants into SNV, Insertions of Deletions

Author(s)

Stevie Pederson

See Also
Useful links:

* https://github.com/smped/transmogR
* Report bugs at https://github.com/smped/transmogR/issues

cleanVariants Check provided variants for compatibility

Description

Check and cleanup a set of variants for downstream compatibility

Usage

cleanVariants(var, ...)

S4 method for signature 'GRanges'
cleanVariants(var, ol_vars = "fail", ref_col = "REF"”, alt_col = "ALT", ...)

S4 method for signature 'VcfFile'

cleanVariants(
var,
ol_vars = "fail",
which,

ref_col = "REF",
alt_col = "ALT",

)
Arguments
var GRanges object containing the variants, or a VariantAnnotation:: VcfFile
Not used
ol_vars Error handling for any overlapping variants. Can take values in c("fail", "none",

non

"first", "last", "longest", "shortest"). Default is set to fail, with additional options
to drop all overlapping variants ("none’), select by genomic position (first’,
’last’), or select by the scale of change to the genome (’longest’, *shortest’)

https://github.com/smped/transmogR
https://github.com/smped/transmogR/issues

4 digestSalmon

ref_col, alt_col
Column names corresponding to the reference and alternate alleles

which Passed to VariantAnnotation::ScanVcfParam if working with a VcfFile

Details

This function checks a set of variants for the expected structure which is required by all downstream
functions in transmogR. The primary change to the data structure is that both REF and ALT columns
will be set as simple character vectors.

Given the complicated variant calls that can often be produced by variant callers, additional checks
performed will be to ensure that:

* there are no overlapping variants

* SNPs are all single nucleotides and not longer strings

* SNPs are bi-allelic

* Insertions contain a single nucleotide in the REF column

* Deletions contain a single nucleotide in the ALT column

* No missing values are present

* All ALT/REF nucleotides conform to TUPAC codings

Value

GRanges object with any incompatible variants removed, or an error produced. The mcols will
contain the columns REF and ALT, unless otherwise specified, as character vectors

Examples

Any conflicting variants will be removed

var <- GRanges(c("chr10:114468420-114468422", "chr10:114468422"))

var$REF <- c("GcC", "C")

var$ALT <- c("G", "CTAT")

var

Taken from the 1000GP, the first variant would delete the C at 114468422
whilst the second variant begins an insertion at this position.

These are clearly conflicting. The default value for ol_vars is to fail

with an error (ol_vars = "fail”). However, both can be removed by setting
ol_vars = "none”. A warning will always be produced.
cleanVariants(var, ol_vars = "none")
Or the longest can be retained, along with multiple other options
cleanVariants(var, ol_vars = "longest")
digestSalmon Parse the output from salmon
Description

Parse transcript counts and additional data from salmon

Calculate the overdispersions from a set of paths without parsing any counts

digestSalmon 5
Usage
digestSalmon(

paths,

max_sets = 2L,

aux_dir = "aux_info",

name_fun = basename,

verbose = TRUE,

extra_assays

= NULL,

max_boot = Inf,

)

overdispFromBoots(paths, n_boot, .ids)

Arguments

paths
max_sets
aux_dir

name_fun

verbose

extra_assays

max_boot

n_boot

.ids

Details

Vector of file paths to directories containing salmon results
The maximum number of indexes permitted
Subdirectory where bootstraps and meta_info.json are stored

Function applied to paths to provide colnames in the returned object. Set to
NULL or c() to disable.

Print progress messages

Can take values in c("TPM", "effectiveLength", "length") to optionally request
TPM, effectiveLength or length as assays. Including the length assay is intended
for the use case of personalised transcriptomes where transcript lengths may no
longer be uniform across samples. None will be returned by default

The maximum number of bootstraps to use. Setting this to zero will ignore all
bootstraps and the scaledCounts assay will not be included in the returned object

Not used
The number of bootstraps

Vector of transcript IDs which match the bootstrap values. Will be parsed from
paths if not provided, although this adds time

This function is based heavily on edgeR: : catchSalmon() however, there are some important dif-

ferences:

1. A SummarizedExperiment object is returned

2. Differing numbers of transcripts are allowed between samples

The second point is intended for the scenario where some samples may have been aligned to a full
reference, with remaining samples aligned to a partially masked reference (e.g. chrY). This will
lead to differing numbers of transcripts within each salmon index, however, common estimates of
overdispersions are required for scaling transcript-level counts. By default, the function will error
if >2 different sets of transcripts are detected, however this can be modified using the max_sets

argument.

This greater flexibility also requires more stringent checking and, as such, for smaller datasets,
digestSalmon may be slower that the edgeR function.

6 genomogrify

The SummarizedExperiment object returned may also contain multiple assays, as described else-
where on this page

This follows the methods of Baldoni, et al. (2024). Dividing out quantification uncertainty allows
efficient assessment of differential transcript expression with edgeR. Nucleic Acids Research, 52(3),
el3. https://doi.org/10.1093/nar/gkad 1167

Value

A SummarizedExperiment object containing assays for counts and scaledCounts. The scaledCounts
assay contains counts divided by overdispersions. rowData in the returned object will also include
transcript-lengths along with the overdispersion estimates used to return the scaled counts. TPM,
effectiveLength and length can be returned as additional assays by specifying one or more of these
in the extra_assays argument

overdispFromBoots returns a numeric vector

Examples

Provide the path to the parent directories which contains each
quant.sf file

ex_path <- system.file("extdata/salmon_test"”, package = "transmogR")
se <- digestSalmon(ex_path, extra_assays = "TPM", verbose = FALSE)
se

ex_path <- system.file("extdata/salmon_test"”, package = "transmogR")
overdispFromBoots(ex_path, 10)

genomogrify Mogrify a genome using a set of variants

Description

Use a set of SNPS, insertions and deletions to modify a reference genome

Usage

genomogrify(x, var, ...)

S4 method for signature 'XStringSet,GRanges'
genomogrify(

X,

var,

alt_col = "ALT",

mask = GRanges(),

tag = NULL,

sep = "_",
var_tags = FALSE,
var_sep = "_",
ol_vars = "fail”,

verbose = TRUE,

genomogrify

)

S4 method for signature 'BSgenome,GRanges'
genomogrify(
X,
var,
alt_col = "ALT",
mask = GRanges(),
names,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
ol_vars = "fail”,
verbose = TRUE,

)

S4 method for signature 'BSgenome,VcfFile'
genomogrify(
X,
var,
alt_col = "ALT",
mask = GRanges(),
names,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
ol_vars = "fail”,
which,
verbose = TRUE,

)

S4 method for signature 'XStringSet,VcfFile'
genomogrify(
X,
var,
alt_col = "ALT",
mask = GRanges(),
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
ol_vars = "fail”,
which,
verbose = TRUE,

Arguments

X

var

alt_col
mask
tag

sep

var_tags

var_sep

ol_vars

verbose
names

which

Details

genomogrify

A DNAStringSet or BSgenome

GRanges object containing the variants, or a VariantAnnotation::VcfFile
Passed to parallel::mclapply

The name of the column with var containing alternate bases

Optional GRanges object defining regions to be masked with an "N’
Optional tag to add to all sequence names which were modified
Separator to place between seqnames names & tag

logical(1) Add tags indicating which type of variant were incorporated, with ’s’,
’1” and ’d’ representing SNPs, Insertions and Deletions respectively

Separator between any previous tags and variant tags

Error handling for any overlapping variants. See cleanVariants for possible val-
ues and an explanation

logical(1) Print progress messages while running
Sequence names to be mogrified

GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF
directly

This function is designed to create a variant-modified reference genome, intended to be included as
a set of decoys when using salmon in selective alignment mode. Sequence lengths will change if
InDels are included and any coordinate-based information will be lost on the output of this function.

Tags are able to be added to any modified sequence to assist identifying any changes that have been
made to a sequence.

Value

XStringSet with variant modified sequences

Examples

library(GenomicRanges)

dna <- DNAStringSet(c(chr1 = "ACGT", chr2 = "AATTT"))
var <- GRanges(c("chr1:1", "chr1:3", "chr2:1-3"))
var$ALT <- c("C", "GG", "A")

dna

genomogrify(dna,
genomogrify(dna,
genomogrify(dna,
genomogrify(dna,

var)

var, tag = "mod")

var, var_tags = TRUE)

var, mask = GRanges("chr2:1-5"), var_tags = TRUE)

indelcator 9

indelcator Substitute InDels into one or more sequences

Description

Modify one or more sequences to include Insertions or Deletions

Usage

indelcator(x, indels, ...)

S4 method for signature 'XString,GRanges'
indelcator(x, indels, exons, alt_col = "ALT", ol_vars = "fail"”, ...)

S4 method for signature 'DNAStringSet,GRanges'

indelcator(
X,
indels,
alt_col = "ALT",
ol_vars = "fail",

mc.cores = 1,
verbose = TRUE,

)
S4 method for signature 'BSgenome,GRanges'
indelcator(
X ’
indels,
alt_col = "ALT",
ol_vars = "fail",
mc.cores = 1,
names,
)
Arguments
X Sequence of class XString
indels GRanges object with InDel locations and the alternate allele
Passed to parallel::mclapply
exons GRanges object containing exon structure for x
alt_col Column containing the alternate allele
ol_vars Error handling for any overlapping variants. See cleanVariants for possible val-
ues and an explanation
mc.cores Number of cores to use when calling parallel::mclapply internally
verbose logical(1) Print all messages

names passed to BSgenome: : getSeq() when x is a BSgenome object

10 overlapsBy Var

Details

This is a lower-level function relied on by both transmogrify() and genomogrify().

Takes an Biostrings::XString or Biostrings:: XStringSet object and modifies the sequence to incor-
porate InDels. The expected types of data determine the behaviour, with the following expectations
describing how the function will incorporate data

Input Data Type Exons Required Use Case Returned
XString Y Modify a Reference Transcriptome XString
DNAStringSet N Modify a Reference Genome DNAStringSet
BSgenome N Modify a Reference Genome DNAStringSet

Value

A DNAStringSet or XString object (See Details)

See Also

transmogrify() genomogrify()

Examples

Start with a DNAStringSet
library(GenomicRanges)

seq <- DNAStringSet(c(seql = "AATCTGCGC"))
Define an Insertion

var <- GRanges("seql:1")

var$ALT <- "AAA"

seq

indelcator(seq, var)

To modify a single transcript

library(GenomicFeatures)

ex <- GRanges(c("seql:1-3:+", "seql:7-9:+"))

orig <- extractTranscriptSeqs(seq, GRangesList(tx1 = ex))[["tx1"]1]
orig

indelcator(orig, var, exons = ex)

overlapsByVar Count overlaps by variant type

Description

Count how many variants of each type overlap ranges

owl
Usage
overlapsByVar(x, var, ...)

S4 method for signature 'GRangesList,GRanges'
overlapsByVar(x, var, alt_col = "ALT", ...)

S4 method for signature 'GRanges,GRanges'

overlapsByVar(x, var, alt_col = "ALT", ...)
Arguments

X A GRangesList with features of interest

var A Granges object with variants of interest

e Passed to rowSums

alt_col The column within mcols(var) which contains the alternate allele
Details

Taking any GRanges or GRangesList, count how many of each variant type overlap a region.

Value

A vector or matrix

Examples

library(rtracklayer)
library(VariantAnnotation)
gtf <- import.gff(

system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR")
)
grl <- splitAsList(gtf, gtf$type)
vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
overlapsByVar(grl, var)

owl OverWrite Letters in an XStringSet

Description

OverWrite Letters (e.g. SNPs) in an XStringSet

Usage

owl(seq, snps, ...)

S4 method for signature 'XStringSet,GRanges'
owl(seq, snps, alt_col = "ALT", ol_vars = "fail", ...)

S4 method for signature 'BSgenome,GRanges'
owl(seq, snps, alt_col = "ALT", names, ...)

12 parY

Arguments
seq A BSgenome, DNAStringSet, RNAStringSet or other XStringSet.
snps A GRanges object with SNP positions and a column containing the alternate
allele
Passed to Biostrings: :replacelLetterAt()
alt_col Column name in the mcols element of snps containing the alternate allele
ol_vars Error handling for any overlapping variants. See cleanVariants for possible val-
ues and an explanation
names Sequence names to operate on
Details

This is a lower-level function called by transmogrify() and genomogrify(), but able to be called
by the user if needed

Note that when providing a BSgenome object, this will first be coerced to a DNAStringSet which
can be time consuming.

Value

An object of the same class as the original object, but with SNPs inserted at the supplied positions

Examples

seq <- DNAStringSet(c(chr1l = "AAGC"))
snps <- GRanges("chr1:2")

snps$ALT <- "G"

snps

seq

owl(seq, snps)

parY Get the PAR-Y Regions From a Seqinfo Object

Description

Define the Pseudo-Autosomal Regions from a Seqinfo Object
Usage
parY(x, ...)

S4 method for signature 'Seqginfo'’
parY(x, ...)

S4 method for signature 'character'
parY(x, prefix = NULL, ...)

shiftBy Var 13
Arguments
X A Seqinfo object or any of named build. If passing a character vector, match.arg()
will be used to match the build.
Not used
prefix Optional prefix to place before chromosome names. Can only be NULL, "" or
llchrll
Details

Using a seqinfo object based on either hg38, hg19, CHM13.v2 or their variations, create a GRanges
object with the Pseudo-Autosomal Regions from the Y chromosome for that build. The length
of the Y chromosome on the seqinfo object is used to determine the correct genome build when

passing a Seqinfo object. Otherwise

An additional mcols column called PAR will indicate PAR1 and PAR2

Value

A GenomicRanges object

Examples

library(Seginfo)
sq <- Seqinfo(
segnames = "chrY"”, seqlengths = 59373566, genome = "hgl19_only_chrY”
)
parY(sq)

PAR regions for CHM13 are also available
sq <- Seqinfo(
segnames = "chrY”, seqlengths = 62460029, genome = "CHM13"
)
parY(sq)

Or just call by name
parY("GRCh38", prefix = "chr")

shiftByVvar Calculate new exon co-ordinates

Description

Calcluate new exon co-ordinates after including InDels

Usage

shiftByVar(x, var, alt_col = "ALT", mc.cores =1, ...)

14

Arguments

X
var
alt_col

mc.cores

Details

sjFromExons

A GenomicRanges object with co-ordinates needing to be recalculated
A set of variants to be incorporated into a reference genome

The name of the column with the alternate sequence for each variant
Passed internally to parallel: :mclapply()

Not used

Given a set of variants, this will return a set of genomic ranges with updated co-ordinates able to be
applied on a variant modified reference genome

Value

GRanges object with co-ordinates shifted according the to the provided variants. The new co-
ordinates will be compatible with a variant-modified genome as produced by genomogrify() and
can be used to extract the sequences associated with the ranges in the modified reference.

Examples

Define a 3nt insertion
var <- GRanges("seql:5:%", seqlengths = c(seql1=10), REF = "A", ALT = "AGT")

var

A simple GRanges to shift co-ordinates for
gr <- GRanges("seq1:1-10:+", seqlengths = c(seq1=10), feature = "featurel")

gr

Create shifted co-ordinates based on the provided variants
new_gr <- shiftByVar(gr, var)

new_gr

The seglengths will have been adjusted to account for all variants
seqginfo(new_gr)

sjFromExons

Obtain Splice-Junctions from Exons and Transcripts

Description

Using GRanges defining exons and transcripts, find the splice-junctions

Usage
sjFromExons(
X,
rank_col = c("exon_number", "exon_rank"),
tx_col = c("transcript_id", "tx_id"),
extra_cols = "all"”,
don_len = 8,
acc_len = 5,
as = c("GRanges"”, "GInteractions"”),

sjFromExons 15

Arguments
X GRanges object with exons and transcripts. A column indicating the position
(or rank) of each exon within the transcript must be included.
rank_col The column containing the position of each exons within the transcript
tx_col The column containing unique transcript-level identifiers
extra_cols Can be a vector of column names to return beyond rank_col and tx_col. By

default all columns are returned (extra_cols = "all").
don_len, acc_len

Length of donor and acceptor sites respectively

as Return as a set of GenomicRanges, or with each splice junction annotated as a
Genomiclnteraction
Not used
Details

A canonical splice junction consists of a donor site and an acceptor site at each end of an intron,
with a branching site somewhere wthin the intron. Canonical donor sites are 8nt long with the
the first two bases being exonic and the next 6 being derived form intronic sequences. Canonical
acceptor sites are Snt long with the first four bases being intronic and the final base being the first
base of the next exon.

This functions uses each set of exons within a transcript to identify both donor and acceptor sites.
Branch sites are not identified.

Value

A GRanges object with requested columns, and an additional column, ’site’, annotating each region
as a donor or acceptor site.

Alternatively, by specifying as = "GlInteractions", the junctions can be returned with each splice
junction annotated as a Genomiclnteraction. This can make the set of junctions easier to interpret
for a given transcript.

Examples

library(rtracklayer)
gtf_cols <- ¢(
"transcript_id"”, "transcript_name"”, "gene_id", "gene_name", "exon_number’
)
gtf <- import.gff(
system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),

I

feature.type = "exon", colnames = gtf_cols
)
sj <- sjFromExons(gtf)
sj

Or to simplify shared splice junctions across multiple transcripts
library(extraChIPs, quietly = TRUE)
chopMC(sj)

Splice Junctions can also be returned as a GInteractions object with
anchorOne as the donor & anchorTwo as the acceptor sites
sjFromExons(gtf, as = "GInteractions"”)

16 transmogrify

transmogrify Mogrify a transcriptome using a set of variants

Description

Use a set of SNPs, insertions and deletions to modify a reference transcriptome

Usage

transmogrify(x, var, exons, ...)

S4 method for signature 'XStringSet,GRanges,GRanges'
transmogrify(

X,

var,

exons,

alt_col = "ALT",

trans_col = "transcript_id",

omit_ranges = NULL,

tag = NULL,

sep = "_",

var_tags = FALSE,

var_sep = "_",

ol_vars = "fail”,

verbose = TRUE,

mc.cores = 1,

)
S4 method for signature 'BSgenome,GRanges,GRanges'
transmogrify(
X,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
ol_vars = "fail”,
verbose = TRUE,

mc.cores = 1,

S4 method for signature 'BSgenome,VcfFile,GRanges'
transmogrify(

X,

var,

transmogrify

exons,

17

alt_col = "ALT",
trans_col = "transcript_id",

omit_ranges =
tag = NULL,

non

sep =

’

NULL,

var_tags = FALSE,

n o n

var_sep =

ol_vars = "fail”,
verbose = TRUE,

mc.cores = 1,
which,

S4 method for signature 'XStringSet,VcfFile,GRanges'

transmogrify(
X,
var,
exons,

alt_col = "ALT",
trans_col = "transcript_id",

omit_ranges =
tag = NULL,

n o n

sep =

NULL,

var_tags = FALSE,

n o n

var_sep =

ol_vars = "fail”,
verbose = TRUE,

mc.cores = 1,
which,

Arguments

X
var

exons

alt_col
trans_col
omit_ranges
tag

sep

var_tags

var_sep

ol_vars

Reference genome as either a DNAStringSet or BSgenome

GRanges object containing the variants

GRanges object with ranges representing exons

Passed to parallel::mclapply

Column from var containing alternate bases

Column from ’exons’ containing the transcript_id

GRanges object containing ranges to omit, such as PAR-Y regions, for example
Optional tag to add to all sequence names which were modified

Separator to place between seqnames names & tag

logical(1) Add tags indicating which type of variant were incorporated, with ’s’,
’1” and ’d’ representing SNPs, Insertions and Deletions respectively

Separator between any previous tags and variant tags

Error handling for any overlapping variants. See cleanVariants for possible val-
ues and an explanation

18 upsetVarByCol

verbose logical(1) Include informative messages, or operate silently
mc.cores Number of cores to be used when multi-threading via parallel::mclapply
which GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF
directly
Details

Produce a set of variant modified transcript sequences from a standard reference genome. Supported
variants are SNPs, Insertions and Deletions

Ranges needing to be masked, such as the Y-chromosome, or Y-PAR can be provided.

It should be noted that this is a time consuming process Inclusion of a large set of insertions
and deletions across an entire transcriptome can involve individually modifying many thousands of
transcripts, which can be a computationally demanding task. Whilst this can be parallelised using an
appropriate number of cores, this may also prove taxing for lower power laptops, and pre-emptively
closing memory hungry programs such as Slack, or internet browers may be prudent.

Value

An XStringSet

Examples

library(GenomicRanges)

library(GenomicFeatures)

seq <- DNAStringSet(c(chrl = "ACGTAAATGG"))
exons <- GRanges(c("chr1:1-3:-", "chr1:7-9:-"))
exons$transcript_id <- c("trans1")

When using extractTranscriptSeqs -stranded exons need to be sorted by end
exons <- sort(exons, decreasing = TRUE, by = ~end)

exons

trByExon <- splitAsList(exons, exons$transcript_id)

Check the sequences
seq
extractTranscriptSeqs(seq, trByExon)

Define some variants
var <- GRanges(c("chri1:2", "chri1:8"))
var$ALT <- c("A", "GGG")

Include the variants adding tags to indicate a SNP and indel
The exons GRanges object will be split by transcript internally
transmogrify(seq, var, exons, var_tags = TRUE)

upsetVarByCol Show Variants by Impacted Columns

Description

Produce an UpSet plot showing unique values from a given column

upsetVarByCol 19

Usage
upsetVarByCol(
gr,
var,
alt_col = "ALT",
mcol = "transcript_id”,
fill = NULL,

fill_scale = scale_fill_discrete(),
expand_sets = 0.2,

hj_sets = 1.1,

expand_intersect = 0.1,

vj_intersect = -0.5,

label_size = 3.5,

title
)

Arguments
gr GRanges object with ranges representing a key feature such as exons
var GRanges object with variants in a given column
alt_col Column within var containing the alternate allele
mcol The column within gr to summarise results by
Passed to SimpleUpset::simpleUpSet

fill Optional column in gr used to fill intersections and sets
fill_scale Discrete ggplot2 scale for filling bars. Ignored if fi11 = NULL
expand_sets Expand the set-size x-axis by this amount
hj_sets Horizontal adjustment of set size labels

expand_intersect
Expand the intersection y-axis by this amount

vj_intersect Vertical adjustment of intersection size labels

label_size Control the size of both intersection and sit size labels
title Summary title to show above the intersection panel. Can be hidden by setting to
NULL
Details

Take a set of variants, classify them as SNV, Insertion and Deletion, then using a GRanges object,
produce an UpSet plot showing impacted values from a given column

Value

An UpSet plot

See Also

SimpleUpset::simpleUpSet

20

Examples

library(rtracklayer)
library(VariantAnnotation)

library(ggplot2)

gtf <- import.gff(
system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),

feature.type

)

= "exon"”

vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
upsetVarByCol(gtf, var)

upsetVarByCol(

gtf, var, fill = "transcript_type”,

varTags

fill_scale = scale_fill_brewer(palette = "Set1")
)
varTags Create a set of tags indicating overlap status with variants
Description

Create a set of tags indicating overlap status with variants

Usage
varTags(x, var, tag = NULL, var_tags = TRUE, sep = "_", pre = sep,
Arguments
X GRanges or GRangesList
var Set of variants for x to be compared to
tag Tag to be added for all overlapping positions
var_tags logical(1) Include ’s’, ’i’ and ’d’ tags. See details
sep Separator added between tag and var_tags
pre Separator to add at the start of returned tags
Passed to cleanVariants()
Details

>

Take a GRanges or GRangesList and compare against a set of variants. Variants will be classified
into SNV, Insertions and Deletions using varTypes() and tags defined. An overall set of tags

defining any overlap can be created by themselves. An additional set of tags containing

9,0 %1%

s,

i’ or’d’

to indicate overlap with an SNV, Insertion or Deletion can also be created, with the concatentation
of both tags being returned.

Value

Character vector of the same length as x

varTypes 21

Examples

Load the included subset of 1000 Genomes Variants
library(VariantAnnotation)

vef <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
vcf <- VcfFile(vcf)

var <- cleanVariants(vcf)

Now load some exons, then split by transcript, subsetting to the first 40
library(rtracklayer)

f <- system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR")
gtf <- import.gff(f, feature.type = "exon")

exon_by_trans <- splitAsList(gtf, gtf$transcript_id)[1:40]

And produce tags based on the overlapping variants within the exons
Overlapping SNVs will return an 's' whilst insertions include an 'i
varTags(exon_by_trans, var, tag = "1000GP")

varTypes Identify SNVs, Insertions and Deletions

Description

Identify SN'Vs, Insertions and Deletions within a GRanges object

Usage
varTypes(x, alt_col = "ALT", ...)
Arguments
X GenomicRanges object
alt_col Name of the column with mcols(x) which contains the alternate allele. Can be
an XStringSetList, XStringSet or character
Not used
Details

Using the width of the reference and alternate alleles, classify each range as an SNV, Insertion or
Deletion.

* SNVs are expected to have REF & ALT widths of 1
* Insertions are expected to have ALT longer than REF
* Deletions are expected to have ALT shorter than REF

These are relatively permissive criteria

Value

Character vector

22 varTypes

Examples

Load the example VCF and classify ranges

library(VariantAnnotation)

f <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
vcf <- readVcf(f)

gr <- rowRanges(vcf)

type <- varTypes(gr)

table(type)

gritype !'= "SNV"]

Index

* internal
transmogR-package, 2

Biostrings: :replacelLetterAt(), 12
Biostrings: :XString, 10
Biostrings: :XStringSet, 10

cleanVariants, 3,8, 9, 12,17
cleanVariants(), 20
cleanVariants,GRanges-method
(cleanVariants), 3
cleanVariants,VcfFile-method
(cleanVariants), 3
cleanVariants-methods (cleanVariants), 3

digestSalmon, 4
edgeR: :catchSalmon(), 5

genomogrify, 6
genomogrify(), 2, 10, 12, 14
genomogrify,BSgenome, GRanges-method
(genomogrify), 6
genomogrify,BSgenome,VcfFile-method
(genomogrify), 6
genomogrify,XStringSet,GRanges-method
(genomogrify), 6
genomogrify,XStringSet,VcfFile-method
(genomogrify), 6
genomogrify-methods (genomogrify), 6

indelcator, 9

indelcator(), 2

indelcator,BSgenome, GRanges-method
(indelcator), 9

indelcator,DNAStringSet,GRanges-method
(indelcator), 9

indelcator,XString,GRanges-method
(indelcator), 9

match.arg(), I3

overdispFromBoots (digestSalmon), 4
overlapsByVar, 10
overlapsByVar(), 2

23

overlapsByVar,GRanges,GRanges-method
(overlapsByVar), 10

overlapsByVar,GRangeslList,GRanges-method

(overlapsByVar), 10
overlapsByVar-methods (overlapsByVar),
10
owl, 11
owl(), 2
owl,BSgenome, GRanges-method (owl), 11
owl,XStringSet,GRanges-method (owl), 11

parallel::mclapply, 8, 9,17, 18
parallel::mclapply(), 14
pary, 12

parY(), 3
parY,character-method (parY), 12
parY,Seqinfo-method (parY), 12
parY-methods (parY), 12

rowSums, 7/

shiftByVar, 13
SimpleUpset: :simpleUpSet, 19
sjFromExons, 14

transmogR (transmogR-package), 2
transmogR-package, 2
transmogrify, 16
transmogrify(), 2, 10, 12

transmogrify,BSgenome, GRanges, GRanges-method

(transmogrify), 16

transmogrify,BSgenome,VcfFile,GRanges-method

(transmogrify), 16

transmogrify,XStringSet,GRanges, GRanges-method

(transmogrify), 16

transmogrify,XStringSet,VcfFile,GRanges-method

(transmogrify), 16
transmogrify-methods (transmogrify), 16

upsetVarByCol, 18
upsetVarByCol (), 3

VariantAnnotation: :ScanVcfParam, 4, 8,
18
VariantAnnotation: :VcfFile, 3, 8

24 INDEX

varTags, 20
varTypes, 21
varTypes(), 3, 20

	transmogR-package
	cleanVariants
	digestSalmon
	genomogrify
	indelcator
	overlapsByVar
	owl
	parY
	shiftByVar
	sjFromExons
	transmogrify
	upsetVarByCol
	varTags
	varTypes
	Index

