Package ‘tadar’

October 14, 2025

Title Transcriptome Analysis of Differential Allelic Representation
Version 1.7.1

Description This package provides functions to standardise the analysis of
Differential Allelic Representation (DAR). DAR compromises the integrity of
Differential Expression analysis results as it can bias expression,
influencing the classification of genes (or transcripts) as being
differentially expressed. DAR analysis results in an easy-to-interpret
value between 0 and 1 for each genetic feature of interest, where 0
represents identical allelic representation and 1 represents complete
diversity. This metric can be used to identify features prone to
false-positive calls in Differential Expression analysis, and can be
leveraged with statistical methods to alleviate the impact of such
artefacts on RNA-seq data.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Config/testthat/edition 3

BugReports https://github.com/baerlachlan/tadar/issues

URL https://github.com/baerlachlan/tadar
BiocType Software

biocViews Sequencing, RNASeq, SNP, GenomicVariation,
VariantAnnotation, DifferentialExpression

VignetteBuilder knitr
Depends GenomicRanges, ggplot2, R (>=4.4.0)

Imports BiocGenerics, Seqinfo, Gviz, IRanges, lifecycle,
MatrixGenerics, methods, rlang, Rsamtools, S4Vectors, stats,
VariantAnnotation

Suggests BiocStyle, covr, knitr, limma, rmarkdown, testthat (>=
3.0.0), tidyverse

git_url https://git.bioconductor.org/packages/tadar
git_branch devel

git_last_commit 94180a4

git_last_commit_date 2025-07-23

https://github.com/baerlachlan/tadar/issues
https://github.com/baerlachlan/tadar

2 tadar-package

Repository Bioconductor 3.22

Date/Publication 2025-10-13

Author Lachlan Baer [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5213-3401>),
Stevie Pederson [aut] (ORCID: <https://orcid.org/0000-0001-8197-3303>)

Maintainer Lachlan Baer <baerlachlan@gmail.com>

Contents
tadar-package e e e e 2
assignFeatureDar L. e 3
chrl_genes e e 4
chrl tt e e 5
countAlleles e e e e e 5
countsTOProps L 6
dar e 7
filterLoci e 8
flipRanges e 9
modP . . . e 10
plotChrDar 11
plotDarECDF e e e 13
1eadGenotypes it e e e e e e e e e e e e e e e 14
unphaseGT e 15

Index 16

tadar-package tadar: A package for Differential Allelic Representation (DAR) analy-
Sis
Description

This package enables DAR analysis by providing functions that address discrete steps of the analysis
workflow.

DAR analysis is intended to be performed using functions in the following order:

1.

readGenotypes() parses a multi-sample VCF file and returns a GRanges object containing
only the data that is required for DAR analysis.

. countAlleles() summarises the alleles from genotype data at each range for each sample

group.
filterLoci() removes ranges that do not match a specified criterion.

countsToProps () normalises the allele counts to account for missing data and sample groups
of different sizes.

5. dar() calculates the DAR between two sample groups.

7.

flipRanges() is an optional step that enables the conversion of ranges output by dar () from
origins to regions, or vice versa.

assignFeatureDar () assigns DAR values to features of interest.

tadar also provides visualisation functions that allow quick inspection of DAR within the dataset:

https://orcid.org/0000-0001-5213-3401
https://orcid.org/0000-0001-8197-3303

assignFeatureDar 3

* plotChrDar() produces a Gviz plot that displays the trend in DAR across a chromosome.
* plotDarkECDF () produces a ggplot2 figure comparing DAR between chromosomes.

Author(s)

Lachlan Baer, Stevie Pederson

See Also
Useful links:

e https://github.com/baerlachlan/tadar
* Report bugs at https://github.com/baerlachlan/tadar/issues

assignFeatureDar Assign DAR values to genomic features

Description

Assign DAR values to genomic features of interest by averaging the DAR values of ranges that
overlap the feature range.

Usage
assignFeatureDar(
dar,
features,
dar_val = c("origin”, "region"),
fill_missing = NA
)
S4 method for signature 'GRangeslList,GRanges'
assignFeatureDar(
dar,
features,
dar_val = c("origin”, "region"),
fill_missing = NA
)
Arguments
dar GRangesList with DAR values of the associated ranges contained in metadata

columns. Ranges that represent DAR regions are recommended to assign the
greatest number of features with DAR values. This results in an assigned es-
timate of DAR in the region surrounding the feature. Alternatively, the use of
DAR origin ranges results in an assigned average of DAR solely within the fea-
ture. Ranges can be converted between origins and regions with flipRanges.

features GRanges object specifying the features of interest.

dar_val Deprecated. character (1) specifying the whether to use origin or region DAR
values for the chosen ranges. Please use the default "origin" to avoid averaging
already averaged values.

fill_missing The DAR value to assign features with no overlaps. Defaults to NA.

https://github.com/baerlachlan/tadar
https://github.com/baerlachlan/tadar/issues

4 chri_genes

Value

GRangesList with ranges representing features of interest that overlap at least one DAR range.
Feature metadata columns are retained and an additional column is added for the assigned DAR
value.

Examples

data("chri_genes")
fl <- system.file("extdata”, "chril.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@("sample”, 1:6),
group2 = paste@("sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterLoci(counts)
props <- countsToProps(counts_filt)
contrasts <- matrix(
data = c(1, -1),
dimnames = list(
Levels = c("group1”, "group2"),
Contrasts = c("grouplv2")
)
)
dar <- dar(props, contrasts, region_loci = 5)
assignFeatureDar(dar, chri_genes)

dar_regions <- flipRanges(dar, extend_edges = TRUE)
assignFeatureDar(dar_regions, chri_genes)

chri_genes Genomic feature example data

Description

Gene features for example usage. Generation of this data is documented in system. file("data-raw/chri_genes.R",
package = "tadar").

Usage

data(chri_genes)

Format

An object of class GRanges of length 1456.

Value

GRanges object with 1456 ranges and 2 metadata columns.

chrl_genes Ranges represent gene features for chromosome 1 of zebrafish GRCz11 genome.

chrl_tt 5

Source

https://www.ensembl.org

chri_tt Differential expression example data

Description

p-values from differential expressiong testing for example usage.

Usage

data(chri_tt)

Format

An object of class tb1_df (inherits from tbl, data. frame) with 716 rows and 5 columns.

Value

A 716 x 5 tibble object.

countAlleles Count alleles within each experimental group

Description

Summarise the alleles from genotype calls at each single nucleotide locus within each sample group.
Usage
countAlleles(genotypes, groups)

S4 method for signature 'GRanges,list'
countAlleles(genotypes, groups)

Arguments
genotypes GRanges object with metadata columns containing genotype information for all
samples.
groups Named 1ist specifying the sample grouping structure, where each element con-
tains a character vector of sample names.
Value

GRangesList containing a summary of allele counts at each range. Each element of the list repre-
sents a distinct sample group.

https://www.ensembl.org

6 countsToProps

Examples

fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@("sample”, 1:6),
group2 = paste@(”sample”, 7:13)
)
countAlleles(genotypes, groups)

countsToProps Convert allele counts to proportions

Description

Normalise allele-level counts across samples by converting to a proportion of total alleles in all
samples.

Usage

countsToProps(counts)

S4 method for signature 'GRangeslList'
countsToProps(counts)

Arguments
counts GRangesList containing a summary of allele counts at each range. Each ele-
ment of the list represents a distinct sample group.
Value

GRangesList containing a summary of normalised allele counts (i.e. as proportions) at each range.
Each element of the list represents a distinct sample group.

Examples

fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@("sample”, 1:6),
group2 = paste@("sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterLoci(counts)
countsToProps(counts_filt)

dar 7

dar Calculate Differential Allelic Representation (DAR)

Description

Calculate DAR between two sample groups.

Usage

dar(props, contrasts, region_fixed = NULL, region_loci = NULL)

S4 method for signature 'GRangesList,matrix’
dar(props, contrasts, region_fixed = NULL, region_loci = NULL)

Arguments
props GRangeslList containing a summary of normalised allele counts (i.e. as pro-
portions) at each range. Each element of the list represents a distinct sample
group.
contrasts Contrast matrix specifying which sample groups to to calculate DAR between.

Each column must represent a single contrast, and rows represent the levels (i.e.
sample groups) to be contrasted. The two levels involved with each contrast
should be specified with 1 and -1.

region_fixed integer (1) specifying the width (in base pairs) of a fixed sliding window used
for averaging DAR values within a region, which is centralised around the ori-
gin. Must be an integer greater than 1. This argument takes precedence over
region_loci.

region_loci integer (1) specifying the number of loci to include in an elastic sliding win-
dow used for averaging DAR values within a region. Must be an odd integer
in order to incorporate the origin locus and an equal number of loci either side.
Only used when region_fixed is NULL.

Details

DAR is calculated as the Euclidean distance between the allelic proportions (i.e. proportion of As,
Cs, Gs and Ts) of two sample groups at a single nucleotide locus, scaled such that all values range
inclusively between 0 and 1. A DAR value of 0 represents identical allelic representation between
the two sample groups, while a DAR value of 1 represents complete diversity.

Value

GRangesList containing DAR values at each overlapping range between the contrasted sample
groups. Two types of DAR values are reported in the metadata columns of each GRanges object:

e dar_origin: The raw DAR values calculated at single nucleotide positions (the origin) be-
tween sample groups. These values represent DAR estimates at a precise locus.

* dar_region: The mean of raw DAR values in a specified region surrounding the origin. This
is optionally returned using either of the region_fixed or region_loci arguments, which
control the strategy and size for establishing regions (more information below). This option
exists because eQTLs don’t necessarily confer their effects on genes in close proximity. There-
fore, DAR estimates that are representative of regions may be more suitable for downstream
assignment DAR values to genomic features.

8 filterLoci

Each element of the list represents a single contrast defined in the input contrast matrix.

Examples

fl <- system.file("extdata”, "chril.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@("sample”, 1:6),
group2 = paste@("sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterLoci(counts)
props <- countsToProps(counts_filt)
contrasts <- matrix(
data = c(1, -1),
dimnames = list(
Levels = c("group1”, "group2"),
Contrasts = c("grouplv2")
)
)

dar(props, contrasts, region_loci = 5)

filterLoci Filter loci

Description

Filter loci based on allele count criteria.

Usage

filterLoci(counts, filter = n_called > n_missing)

S4 method for signature 'GRangeslList'
filterLoci(counts, filter = n_called > n_missing)

Arguments
counts GRangesList containing a summary of allele counts at each range. Each ele-
ment of the list represents a distinct sample group.
filter A logical expression indicating which rows to keep. Possible values include:
* n_called The number of total alleles called.
* n_missing The number of total alleles not reported.
* n_0,n_1,n_2,n_3 The number of ref, alt1, alt2 and alt3 alleles respectively.
All values represent the sum of counts across all samples within the group. De-
faults to return loci where the number of samples containing allele information
is greater than number samples with missing information.
Value

GRangesList containing a summary of allele counts at each range passing the filter criteria. Each
element of the list represents a distinct sample group.

flipRanges 9

Examples

fl <- system.file("extdata”, "chril.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(

groupl = paste@(”sample”, 1:6),

group2 = paste@("sample”, 7:13)

)
counts <- countAlleles(genotypes, groups)
filterLoci(counts)
flipRanges Convert DAR origin ranges to DAR region ranges, or vice versa
Description

Convert the ranges element associated with origin DAR values to ranges associated with the region
DAR values. This function can also be used to revert back to the original object containing origin
ranges if desired.

Usage

flipRanges(dar, extend_edges = FALSE)

S4 method for signature 'GRangeslList'
flipRanges(dar, extend_edges = FALSE)

Arguments

dar GRangesList with ranges representing single nucleotide (origin) positions.

extend_edges logical (1) specifying if region DAR ranges at the edges of each chromosome
should be extended to cover the entire chromosome when converting from ori-
gin ranges to region ranges. This argument is only considered if region_loci
was used to construct regions in the dar() function. Useful for downstream
assignment of DAR values to genomic features that exist at the 5’ or 3* edges of
the chromosome, which would have otherwise been missed.

Value

GRangesList with ranges that represent either DAR regions or DAR origins, depending on the
ranges of the input object.

Examples

fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@("sample”, 1:6),
group2 = paste@("sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterlLoci(counts)

10 modP

props <- countsToProps(counts_filt)
contrasts <- matrix(
data = c(1, -1),
dimnames = list(
Levels = c("group1”, "group2"),
Contrasts = c("grouplv2")

Establish regions using an elastic sliding window

dar <- dar(props, contrasts, region_loci = 5)

Convert ranges to regions associated with dar_region values
dar_regions <- flipRanges(dar)

Optionally extend the outer regions to completely cover chromosomes
dar_regions <- flipRanges(dar, extend_edges = TRUE)

Convert back to origin ranges associated with dar_origin values
flipRanges(dar_regions)

Establish regions using a fixed sliding window

dar <- dar(props, contrasts, region_fixed = 1001)

Convert ranges to regions associated with dar_region values
dar_regions <- flipRanges(dar)

Convert back to origin ranges associated with dar_origin values
flipRanges(dar_regions)

modP DAR-moderated p-values

Description

Moderate p-values from DE testing using assigned DAR values.
Usage
modP (pvals, dar, slope = -1.8)

S4 method for signature 'numeric,numeric'
modP(pvals, dar, slope = -1.8)

Arguments
pvals numeric of feature-level p-values from differential expression testing.
dar numeric of DAR values assigned to corresponding features tested for differen-
tial expression.
slope numeric(1) specifying the slope of alpha fit.
Value

numeric of DAR-moderated p-values of same length as input p-values.

plotChrDar 11

Examples

data("chri_genes")
data("chri_tt")
fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(

groupl = paste@("sample”, 1:6),

group2 = paste@(”sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterLoci(counts)
props <- countsToProps(counts_filt)
contrasts <- matrix(

data = c(1, -1),

dimnames = list(

Levels = c("groupl”, "group2"),
Contrasts = c("grouplv2")

)
)
dar <- dar(props, contrasts, region_loci = 5)
dar_regions <- flipRanges(dar, extend_edges = TRUE)
gene_dar <- assignFeatureDar(dar_regions, chril_genes, dar_val = "region")
chri_tt <- merge(chri_tt, mcols(gene_dar$groupiv2), sort = FALSE)
chri_tt$darP <- modP(chri_tt$PValue, chri_tt$dar)

plotChrDar Plot DAR across a chromosome

Description

Use Gviz to plot the trend in DAR across a chromosomal region with the option to add features of
interest as separate tracks.

Usage

plotChrDar(
dar,
dar_val = c("origin”, "region"),
chr,
foi,
foi_anno,
foi_highlight = TRUE,
features,
features_anno,
features_highlight = TRUE,
title = ""

S4 method for signature 'GRanges'
plotChrDar(
dar,

12 plotChrDar

dar_val = c("origin”, "region"),
chr,

foi,

foi_anno,

foi_highlight = TRUE,

features,

features_anno,
features_highlight = TRUE,

title = ""
)
Arguments

dar GRanges with DAR values of associated ranges contained in metadata columns.
Used to build the DataTrack showing the trend in DAR across the chromosome.
If ranges of the input object span regions (i.e. post application of flipRanges()),
data points are plotted at the midpoint of the region.

dar_val character (1) specifying the whether to use origin or region DAR values for
the chosen ranges. Options are "origin" and "region". The default ("region")
represents averaged DAR values across a region and produces a smoother graph.

chr Optional. character (1) specifying the chromosome to subset all GRanges ob-
jects. Plotting is only possible across a single chromosome and is therefore
required if supplying GRanges objects spanning multiple chromosomes. Also
controls the track title for the GenomeAxisTrack.

foi Optional. GRanges object of features of interest (foi) to be highlighted and la-
belled along the GenomeAxisTrack.

foi_anno Optional. character(1) specifying the name of the mcol containing labels

associated with feature ranges in foi.

foi_highlight logical(1) specifying if the positions of foi should be overlayed on the Data-
Track showing the trend in DAR. Useful for visually inspecting DAR at the
location of chosen features. Default is TRUE.

features Optional. GRanges object of features to be plotted on a separate Annotation-
Track.

features_anno Optional. character(1) specifying the name of the mcol containing labels
associated with feature ranges in features.

features_highlight
logical (1) specifying if the positions of features should be overlayed on the
DataTrack showing the trend in DAR. Useful for visually inspecting DAR at the
location of chosen features. Default is TRUE.

title character(1). The main plot title.

Value

A Gviz object

Examples

set.seed(230822)
data("chri_genes")

foi <- sample(chri_genes, 1)
features <- sample(chri_genes, 20)

plotDarECDF 13

fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
genotypes <- readGenotypes(fl)
groups <- list(
groupl = paste@(”sample”, 1:6),
group2 = paste@("sample”, 7:13)
)
counts <- countAlleles(genotypes, groups)
counts_filt <- filterlLoci(counts)
props <- countsToProps(counts_filt)
contrasts <- matrix(
data = c(1, -1),
dimnames = list(
Levels = c("groupl”, "group2"),
Contrasts = c("grouplv2")

)

)

dar <- dar(props, contrasts, region_loci = 5)

plotChrDar(
dar = dar$grouplv2, dar_val = "region”, chr = "1",
foi = foi, foi_anno = "gene_name"”, foi_highlight = TRUE,
features = features, features_anno = "gene_name”,
features_highlight = TRUE,
title = "Example plot of DAR along Chromosome 1"

)

plotDarECDF Plot the Empirical Cumulative Distribution Function of DAR
Description

Plot the ECDF of DAR for each chromosome.

Usage
plotDarkECDF (dar, dar_val = c("origin”, "region"), highlight = NULL)
S4 method for signature 'GRanges'
plotDareECDF (dar, dar_val = c("origin", "region"), highlight = NULL)
Arguments
dar GRanges object with metadata columns containing the desired DAR values to
plot.
dar_val character (1) specifying the whether to plot dar_origin or dar_region values.
Options are "origin" and "region".
highlight character (1) specifying the chromosome to highlight with a different colour.
Value

A ggplot2 object.

14 readGenotypes

Examples

set.seed(230704)
Use simulated data that illustrates a commonly encountered scenario
simulate_dar <- function(n, mean) {
vapply(
rnorm(n = n, mean = mean),
function(x) exp(x) / (1 + exp(x)),
numeric(1)

)
3
gr <- GRanges(
paste@(rep(seq(1,25), each = 100), ":", seq(1,100)),
dar_origin = c(simulate_dar (2400, -2), simulate_dar(100, 0.5))
)

No highlighting, all chromosomes will be given individual colours
plotDareECDF (gr, dar_val = "origin") +
theme_bw()

With highlighting
plotDarECDF(gr, dar_val = "origin”, highlight = "25") +

scale_colour_manual(values = c("TRUE” = "red"”, "FALSE" = "grey")) +
theme_bw()
readGenotypes Read genotypes from a VCF file
Description

Extract genotypes from a VCF file into a GRanges object for downstream DAR analysis.

Usage

readGenotypes(file, unphase = TRUE, ...)

S4 method for signature 'character'
readGenotypes(file, unphase = TRUE, ...)

S4 method for signature 'TabixFile'

readGenotypes(file, unphase = TRUE, ...)
Arguments
file The file path of a VCF file containing genotype data. Alternatively, a TabixFile
as described in readVcf.
unphase A logical specifying if phasing information should be removed from geno-
types. This is required if proceeding with DAR analysis.
Passed to readVcf.
Details

Extract genotypes from a VCF file with the option to remove phasing information for DAR analysis.

unphaseGT 15

Value

A GRanges object constructed from the CHROM, POS, ID and REF fields of the supplied VCF file.
Genotype data for each sample present in the VCF file is added to the metadata columns.

Examples

fl <- system.file("extdata”, "chrl.vcf.bgz", package="tadar")
readGenotypes(fl)

unphaseGT Unphase genotypes

Description

Remove phasing information from genotype calls.

Usage

unphaseGT(gt)

S4 method for signature 'matrix’
unphaseGT(gt)

S4 method for signature 'data.frame'
unphaseGT(gt)
Arguments

gt matrix or data.frame containing sample genotype information.

Details

Phasing information is not required for a simple DAR analysis. Removing this enables easy count-
ing of alleles from genotype calls.

Value

matrix containing unphased genotype calls.

Examples

library(VariantAnnotation)

fl <- system.file("extdata”, "chril.vcf.bgz", package="tadar")
vcf <- readVcf(fl)

gt <- geno(vcf)$GT

unphaseGT(gt)

Index

x datasets plotDarECDF,GRanges-method
chri_genes, 4 (plotDarECDF), 13
chri_tt, 5

* internal readGenotypes, 14
tadar-package, 2 readGenotypes(), 2

readGenotypes, character-method

assignFeatureDar, 3 (readGenotypes), 14

assignFeatureDar(), 2 readGenotypes, TabixFile-method

assignFeatureDar,GRangesList,GRanges-method (readGenotypes), 14

(assignFeatureDar), 3 readVcf, /4

chri_genes, 4 tadar (tadar-package), 2
chr1_tt, 5 tadar-package, 2

countAlleles, 5

countAlleles(), 2

countAlleles,GRanges,list-method
(countAlleles), 5

countsToProps, 6

countsToProps(), 2

countsToProps,GRangesList-method
(countsToProps), 6

unphaseGT, 15

unphaseGT,data. frame-method
(unphaseGT), 15

unphaseGT,matrix-method (unphaseGT), 15

dar, 7
dar(), 2,9
dar,GRangesList,matrix-method (dar), 7

filterLoci, 8

filterLoci(), 2

filterLoci,GRangesList-method
(filterLoci), 8

flipRanges, 3,9

flipRanges(), 2, 12

flipRanges,GRangesList-method
(flipRanges), 9

modP, 10
modP, numeric,numeric-method (modP), 10

plotChrDar, 11

plotChrDar(), 3

plotChrDar,GRanges-method (plotChrDar),
11

plotDarECDF, 13

plotDarECDF(), 3

16

	tadar-package
	assignFeatureDar
	chr1_genes
	chr1_tt
	countAlleles
	countsToProps
	dar
	filterLoci
	flipRanges
	modP
	plotChrDar
	plotDarECDF
	readGenotypes
	unphaseGT
	Index

