## ----knitr-options, echo=FALSE, message=FALSE, warning=FALSE---------------
## To render an HTML version that works nicely with github and web pages, do:
## rmarkdown::render("vignettes/vignette.Rmd", "all")
library(knitr)
opts_chunk$set(fig.align = 'center', fig.width = 6, fig.height = 5, dev = 'png')
library(ggplot2)
theme_set(theme_bw(12))

## ----kallisto-demo-kallisto-test-data, eval=FALSE--------------------------
#  ################################################################################
#  ### Tests and Examples
#  
#  # Example if in the kallisto/test directory
#  setwd("/home/davis/kallisto/test")
#  kallisto_log <- runKallisto("targets.txt", "transcripts.idx", single_end=FALSE,
#              output_prefix="output", verbose=TRUE, n_bootstrap_samples=10)
#  
#  sce_test <- readKallistoResults(kallisto_log, read_h5=TRUE)
#  sce_test

## ----kallisto-cell-cycle-example, eval=FALSE-------------------------------
#  setwd("/home/davis/021_Cell_Cycle/data/fastq")
#  system("wc -l targets.txt")
#  ave_frag_len <- mean(c(855, 860, 810, 760, 600, 690, 770, 690))
#  
#  kallisto_test <- runKallisto("targets.txt",
#                               "Mus_musculus.GRCm38.rel79.cdna.all.ERCC.idx",
#                               output_prefix="kallisto_output_Mmus", n_cores=12,
#                               fragment_length=ave_frag_len, verbose=TRUE)
#  sce_kall_mmus <- readKallistoResults(kallisto_test, read_h5=TRUE)
#  sce_kall_mmus
#  
#  sce_kall_mmus <- readKallistoResults(kallisto_test)
#  
#  sce_kall_mmus <- getBMFeatureAnnos(sce_kall_mmus)
#  
#  head(fData(sce_kall_mmus))
#  head(pData(sce_kall_mmus))
#  sce_kall_mmus[["start_time"]]
#  
#  counts(sce_kall_mmus)[sample(nrow(sce_kall_mmus), size=15), 1:6]
#  
#  ## Summarise expression at the gene level
#  sce_kall_mmus_gene <- summariseExprsAcrossFeatures(
#      sce_kall_mmus, exprs_values="tpm", summarise_by="feature_id")
#  
#  datatable(fData(sce_kall_mmus_gene))
#  
#  sce_kall_mmus_gene <- getBMFeatureAnnos(
#      sce_kall_mmus_gene, filters="ensembl_gene_id",
#      attributes=c("ensembl_gene_id", "mgi_symbol", "chromosome_name",
#                   "gene_biotype", "start_position", "end_position",
#                   "percentage_gc_content", "description"),
#      feature_symbol="mgi_symbol", feature_id="ensembl_gene_id",
#      biomart="ensembl", dataset="mmusculus_gene_ensembl")
#  
#  datatable(fData(sce_kall_mmus_gene))
#  
#  ## Add gene symbols to featureNames to make them more intuitive
#  new_feature_names <- featureNames(sce_kall_mmus_gene)
#  notna_mgi_symb <- !is.na(fData(sce_kall_mmus_gene)$mgi_symbol)
#  new_feature_names[notna_mgi_symb] <- fData(sce_kall_mmus_gene)$mgi_symbol[notna_mgi_symb]
#  notna_ens_gid <- !is.na(fData(sce_kall_mmus_gene)$ensembl_gene_id)
#  new_feature_names[notna_ens_gid] <- paste(new_feature_names[notna_ens_gid],
#            fData(sce_kall_mmus_gene)$ensembl_gene_id[notna_ens_gid], sep="_")
#  sum(duplicated(new_feature_names))
#  featureNames(sce_kall_mmus_gene) <- new_feature_names
#  head(featureNames(sce_kall_mmus_gene))
#  tail(featureNames(sce_kall_mmus_gene))
#  sum(duplicated(fData(sce_kall_mmus_gene)$mgi_symbol))
#