Package ‘sccomp’
October 16, 2025

Title Tests differences in cell-type proportion for single-cell data,
robust to outliers

Version 2.0.0

Description A robust and outlier-aware method for testing differences in cell-type proportion in sin-
gle-cell data. This model can infer changes in tissue composition and heterogeneity, and can pro-
duce realistic data simulations based on any existing dataset. This model can also transfer knowl-
edge from a large set of integrated datasets to increase accuracy further.

License GPL-3
URL https://github.com/Mangiolalaboratory/sccomp

BugReports https://github.com/Mangiolalaboratory/sccomp/issues
Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Depends R (>=4.2.0)

Imports instantiate (>= 0.2.3), stats, SingleCellExperiment, parallel,
dplyr, tidyr, purrr, magrittr, rlang, tibble, boot, lifecycle,
tidyselect, utils, ggplot2, ggrepel, patchwork, forcats, readr,
scales, stringr, glue, crayon

Suggests knitr, rmarkdown, BiocStyle, testthat (>= 3.0.0), markdown,
loo, prettydoc, tidyseurat, tidySingleCellExperiment,
bayesplot, posterior

Additional_repositories https://mc-stan.org/r-packages/

SystemRequirements CmdStan
(https://mc-stan.org/users/interfaces/cmdstan)

biocViews Bayesian, Regression, DifferentialExpression, SingleCell,
Metagenomics, FlowCytometry, Spatial

LazyData true

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/sccomp
git_branch RELEASE_3_21

https://github.com/MangiolaLaboratory/sccomp
https://github.com/MangiolaLaboratory/sccomp/issues
https://mc-stan.org/r-packages/

counts_obj

git_last_commit a466882
git_last commit_date 2025-04-15

Repository Bioconductor 3.21
Date/Publication 2025-10-15

Author Stefano Mangiola [aut, cre]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

Contents
COUNES_ODJ v v vt 2
get_output_samples 3
multipanel_theme 4
no_significance_df L 4
plotsccomp_tbl 5
plot_1D_intervals L e 6
plot_2D_intervals e 7
plot_scatterplot e e e e 8
sccomp_boxplot 9
sccomp_calculate_residualso oo 11
SCCOMP_ESHMALE v v v vttt e e e e e e e e e e e e e e e 12
sccomp_predict e 16
sccomp_proportional_fold_change L. 17
sccomp_remove_outliers L 19
sccomp_remove_unwanted_variationo 21
sccomp_replicate e e e e e 23
SCCOMP_LESE « . v v v v e ot e i e e e e e e e e e e e e e e e e 24
SCE_OD] . v e e e e 26
seurat_obj L 27
simulate_data e e 27

Index 30

counts_obj counts_obj
Description

A tidy example dataset containing cell counts per cell group (cluster), sample, and phenotype for
differential analysis. This dataset represents the counts of cells in various phenotypes and cell
groups across multiple samples.

Usage

data(counts_obj)

get_output_samples 3

Format

A tidy data frame with the following columns:

» sample: Factor, representing the sample identifier.

* type: Factor, indicating the sample type (e.g., benign, cancerous).

* phenotype: Factor, representing the cell phenotype (e.g., B_cell, HSC, etc.).

* count: Integer, representing the number of cells for each cell group within each sample.

* cell_group: Factor, representing the cell group (e.g., BM, B1, Dm, etc.).

Value

A tibble representing cell counts per cluster, with columns for sample, type, phenotype, cell group,
and counts.

get_output_samples Get Output Samples from a Stan Fit Object

Description

This function retrieves the number of output samples from a Stan fit object, supporting different
methods (MHC and Variational) based on the available data within the object.

Usage

get_output_samples(fit)

Arguments

fit A stanfit object, which is the result of fitting a model via Stan.

Value

The number of output samples used in the Stan model. Returns from MHC if available, otherwise
from Variational inference.

Examples

Assuming 'fit' is a stanfit object obtained from running a Stan model
print(”samples_count = get_output_samples(fit)")

4 no_significance_df

multipanel_theme multipanel_theme

Description

A custom ggplot2 theme used for creating publication-quality multi-panel plots. This theme mod-
ifies the appearance of plots by adjusting text sizes, spacing between panels, and axis formatting,
ensuring better readability for complex figures.

Usage

data(multipanel_theme)

Format
A ggplot2 theme with the following adjustments:

* text: Font size adjustments for plot titles, axis labels, and legend text.
* panel.spacing: Adjusts the spacing between panels in multi-panel plots.

» axis.text: Customises axis text appearance for better readability.

Value

A ggplot2 theme object.

no_significance_df no_significance_df

Description

A small example dataset containing cell counts across samples, conditions, and cell groups. This
dataset is used to demonstrate the use of sccomp functions in scenarios where there is no significant
difference in cell composition between conditions.

Usage

data(no_significance_df)

Format
A tibble with the following columns:

» sample: Character. Identifier for each sample.
* condition: Character. Experimental condition or group (e.g., "X" or "Y").
¢ cell_group: Character. Cell group or cell type (e.g., "A", "B").

* count: Numeric. Count of cells in the given sample, condition, and cell group.

plot.sccomp_tbl 5

Value

A tibble with 34 rows and 4 columns: sample, condition, cell_group, and count.

Examples

data(no_significance_df)
head(no_significance_df)

plot.sccomp_tbl plot

Description

This function plots a summary of the results of the model.

Usage

S3 method for class 'sccomp_tbl'
plot(
X,
significance_threshold = 0.05,
test_composition_above_logit_fold_change = attr(.data,
"test_composition_above_logit_fold_change"),

Arguments

X A tibble including a cell_group name column | sample name column | read
counts column | factor columns | Pvalue column | a significance column

significance_threshold
Numeric value specifying the significance threshold for highlighting differences.
Default is 0.025.

test_composition_above_logit_fold_change
A positive integer. It is the effect threshold used for the hypothesis test. A value
of 0.2 correspond to a change in cell proportion of 10% for a cell type with
baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When
the baseline proportion is closer to O or 1 this effect thrshold has consistent value
in the logit uncontrained scale.

For internal use

Value

A ggplot

6 plot_1D_intervals

Examples

print("cmdstanr is needed to run this example."”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages("cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimate = sccomp_estimate(
counts_obj,
~ type, ~1, sample, cell_group, count,

cores =1
)
estimate |> plot()
}
plot_1D_intervals Plot 1D Intervals for Cell-group Effects
Description

This function creates a series of 1D interval plots for cell-group effects, highlighting significant
differences based on a given significance threshold.

Usage

plot_1D_intervals(
.data,
significance_threshold = 0.05,
test_composition_above_logit_fold_change = attr(.data,
"test_composition_above_logit_fold_change")

Arguments

.data Data frame containing the main data.

significance_threshold
Numeric value specifying the significance threshold for highlighting differences.

test_composition_above_logit_fold_change
A positive integer. It is the effect threshold used for the hypothesis test. A value
of 0.2 correspond to a change in cell proportion of 10% for a cell type with
baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When
the baseline proportion is closer to O or 1 this effect thrshold has consistent value
in the logit uncontrained scale.

plot_2D_intervals 7

Value

A combined plot of 1D interval plots.

Examples

print(”"cmdstanr is needed to run this example.")

if (instantiate::stan_cmdstan_exists()) {
data(”counts_obj")

estimate <- sccomp_estimate(

counts_obj,
~ type,
~‘I’
sample,
cell_group,
count,
cores =1
E

sccomp_test()

Example usage:
my_plot = plot_1D_intervals(estimate)

}

plot_2D_intervals Plot 2D Intervals for Mean-Variance Association

Description

This function creates a 2D interval plot for mean-variance association, highlighting significant dif-
ferences based on a given significance threshold.

Usage

plot_2D_intervals(
.data,
significance_threshold = 0.05,
test_composition_above_logit_fold_change = attr(.data,
"test_composition_above_logit_fold_change")

8 plot_scatterplot

Arguments

.data Data frame containing the main data.

significance_threshold
Numeric value specifying the significance threshold for highlighting differences.
Default is 0.025.

test_composition_above_logit_fold_change
A positive integer. It is the effect threshold used for the hypothesis test. A value
of 0.2 correspond to a change in cell proportion of 10% for a cell type with
baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When
the baseline proportion is closer to O or 1 this effect thrshold has consistent value
in the logit uncontrained scale.

Value

A ggplot object representing the 2D interval plot.

Examples

print(”"cmdstanr is needed to run this example.”)

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimate <- sccomp_estimate(
counts_obj,
~ type,
~type,
sample,
cell_group,
count,
cores = 1
) 1>

sccomp_test()

Example usage:
my_plot = plot_2D_intervals(estimate)

}

plot_scatterplot Plot Scatterplot of Cell-group Proportion

Description

This function creates a scatterplot of cell-group proportions, optionally highlighting significant dif-
ferences based on a given significance threshold.

sccomp_boxplot 9

Usage

plot_scatterplot(
.data,
data_proportion,
factor_of_interest,
.cell_group,
.sample,
significance_threshold = 0.05,
my_theme

)

Arguments

.data Data frame containing the main data.

data_proportion
Data frame containing proportions of cell groups.

factor_of_interest
A factor indicating the biological condition of interest.

.cell_group The cell group to be analysed.

.sample The sample identifier.

significance_threshold

Numeric value specifying the significance threshold for highlighting differences.
Default is 0.025.

my_theme A ggplot2 theme object to be applied to the plot.

Value

A ggplot object representing the scatterplot.

Examples

Example usage:
plot_scatterplot(.data, data_proportion, "condition”, "cell_group"”, "sample”, ©.025, theme_minimal())

sccomp_boxplot sccomp_boxplot

Description

Creates a boxplot visualization of the model results from sccomp. This function plots the estimated
cell proportions across samples, highlighting significant changes in cell composition according to a
specified factor.

10 sccomp_boxplot

Usage

sccomp_boxplot(
.data,
factor,
significance_threshold = 0.05,
test_composition_above_logit_fold_change = attr(.data,
"test_composition_above_logit_fold_change”),
remove_unwanted_effects = FALSE

)
Arguments
.data A tibble containing the results from sccomp_estimate and sccomp_test, in-
cluding the columns: cell_group name, sample name, read counts, factor(s),
p-values, and significance indicators.
factor A character string specifying the factor of interest included in the model for

stratifying the boxplot.
significance_threshold
A numeric value indicating the False Discovery Rate (FDR) threshold for label-
ing significant cell-groups. Defaults to 0.05.
test_composition_above_logit_fold_change
A positive numeric value representing the effect size threshold used in the hy-
pothesis test. A value of 0.2 corresponds to a change in cell proportion of ap-
proximately 10% for a cell type with a baseline proportion of 50% (e.g., from
45% to 55%). This threshold is consistent on the logit-unconstrained scale, even
when the baseline proportion is close to O or 1.
remove_unwanted_effects
A logical value indicating whether to remove unwanted variation from the data
before plotting. Defaults to FALSE.

Value

A ggplot object representing the boxplot of cell proportions across samples, stratified by the spec-
ified factor.

Examples

print(”"cmdstanr is needed to run this example.")
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages("cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimate <- sccomp_estimate(
counts_obj,
formula_composition = ~ type,
formula_variability = ~ 1,

sccomp_calculate_residuals 11

.sample = sample,
.cell_group = cell_group,
.count = count,
cores =1

) 1>

sccomp_test()

Plot the boxplot of estimated cell proportions
sccomp_boxplot(

.data = estimate,

factor = "type”,

significance_threshold = 0.05

sccomp_calculate_residuals
Calculate Residuals Between Observed and Predicted Proportions

Description

sccomp_calculate_residuals computes the residuals between observed cell group proportions
and the predicted proportions from a fitted sccomp model. This function is useful for assessing
model fit and identifying cell groups or samples where the model may not adequately capture the
observed data. The residuals are calculated as the difference between the observed proportions and
the predicted mean proportions from the model.

Usage

sccomp_calculate_residuals(.data)

Arguments
.data A tibble of class sccomp_tb1l, which is the result of sccomp_estimate(). This
tibble contains the fitted model and associated data necessary for calculating
residuals.
Details

The function performs the following steps:

1. Extracts the predicted mean proportions for each cell group and sample using sccomp_predict().
2. Calculates the observed proportions from the original count data.

3. Computes residuals by subtracting the predicted proportions from the observed proportions.

4.

Returns a tibble containing the sample, cell group, residuals, and exposure (total counts per
sample).

12 sccomp_estimate

Value

A tibble (tbl) with the following columns:

» sample - A character column representing the sample identifiers.
* cell_group - A character column representing the cell group identifiers.

* residuals - A numeric column representing the residuals, calculated as the difference between
observed and predicted proportions.

* exposure - A numeric column representing the total counts (sum of counts across cell groups)
for each sample.

Examples

if (instantiate::stan_cmdstan_exists() && .Platform$0S.type == "unix") {
Load example data
data("counts_obj")

Fit the sccomp model

estimates <- sccomp_estimate(
counts_obj,
formula_composition = ~ type,
formula_variability = ~1,
.sample = sample,
.cell_group = cell_group,
.count = count,
approximate_posterior_inference = "all”,
cores =1

Calculate residuals
residuals <- sccomp_calculate_residuals(estimates)

View the residuals
print(residuals)

}

sccomp_estimate Main Function for SCCOMP Estimate

Description

The sccomp_estimate function performs linear modeling on a table of cell counts or proportions,
which includes a cell-group identifier, sample identifier, abundance (counts or proportions), and
factors (continuous or discrete). The user can define a linear model using an R formula, where the
first factor is the factor of interest. Alternatively, sccomp accepts single-cell data containers (e.g.,
Seurat, SingleCellExperiment, cell metadata, or group-size) and derives the count data from cell
metadata.

sccomp_estimate 13

Usage

sccomp_estimate(
.data,
formula_composition = ~1,
formula_variability = ~1,
.sample,
.cell_group,
.abundance = NULL,
cores = detectCores(),
bimodal_mean_variability_association = FALSE,
percent_false_positive = 5,
inference_method = "pathfinder”,
prior_mean = list(intercept = c(0, 1), coefficients = c(0, 1)),
prior_overdispersion_mean_association = list(intercept = c(5, 2), slope =c(0, 0.6),

standard_deviation = c(10, 20)),

.sample_cell_group_pairs_to_exclude = NULL,
output_directory = "sccomp_draws_files"”,
verbose = TRUE,
enable_loo = FALSE,
noise_model = "multi_beta_binomial”,
exclude_priors = FALSE,
use_data = TRUE,
mcmc_seed = sample(1e+@5, 1),
max_sampling_iterations = 20000,
pass_fit = TRUE,
sig_figs = 9,

.count = NULL,
approximate_posterior_inference = NULL,
variational_inference = NULL

Arguments

.data A tibble including cell_group name column, sample name column, abundance
column (counts or proportions), and factor columns.
formula_composition
A formula describing the model for differential abundance.
formula_variability
A formula describing the model for differential variability.

.sample A column name as a symbol for the sample identifier.
.cell_group A column name as a symbol for the cell-group identifier.
.abundance A column name as a symbol for the cell-group abundance, which can be counts

(> 0) or proportions (between 0 and 1, summing to 1 across .cell_group).

cores Number of cores to use for parallel calculations.
bimodal_mean_variability_association
Logical, whether to model mean-variability as bimodal.

14 sccomp_estimate

percent_false_positive
A real number between 0 and 100 for outlier identification.
inference_method
Character string specifying the inference method to use (’pathfinder’, ’hmc’, or
’variational’).
prior_mean A list specifying prior knowledge about the mean distribution, including inter-
cept and coefficients.
prior_overdispersion_mean_association
A list specifying prior knowledge about mean/variability association.
.sample_cell_group_pairs_to_exclude
A column name indicating sample/cell-group pairs to exclude.
output_directory
A character string specifying the output directory for Stan draws.

verbose Logical, whether to print progression details.
enable_loo Logical, whether to enable model comparison using the LOO package.
noise_model A character string specifying the noise model (e.g., "'multi_beta_binomial’).

exclude_priors Logical, whether to run a prior-free model.
use_data Logical, whether to run the model data-free.

mcme_seed An integer seed for MCMC reproducibility.
max_sampling_iterations
Integer to limit the maximum number of iterations for large datasets.

pass_fit Logical, whether to include the Stan fit as an attribute in the output.
sig_figs Number of significant figures to use for Stan model output. Default is 9.
Additional arguments passed to the cmdstanr: : sample function.

.count DEPRECATED. Use .abundance instead.
approximate_posterior_inference

DEPRECATED. Use inference_method instead.
variational_inference

DEPRECATED. Use inference_method instead.

Value

A tibble (tbl) with the following columns:

* cell_group - The cell groups being tested.

» parameter - The parameter being estimated from the design matrix described by the input
formula_composition and formula_variability.

* factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or
contrasts).

* c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
* c_effect - Mean of the posterior distribution for a composition (c) parameter.

 c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.

sccomp_estimate 15

e ¢_pHO - Probability of the null hypothesis (no difference) for a composition (c). This is not a
p-value.

* c_FDR - False-discovery rate of the null hypothesis for a composition (c).

* c_n_eff - Effective sample size for a composition (c) parameter.

* ¢_R_k_hat - R statistic for a composition (c) parameter, should be within 0.05 of 1.0.

* v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
 v_effect - Mean of the posterior distribution for a variability (v) parameter.

* v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
* v_pHO - Probability of the null hypothesis for a variability (v).

* v_FDR - False-discovery rate of the null hypothesis for a variability (v).

» v_n_eff - Effective sample size for a variability (v) parameter.

» v_R_k_hat - R statistic for a variability (v) parameter.

* count_data - Nested input count data.

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages(”"cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimate <- sccomp_estimate(
counts_obj,
~ type,
~‘I’
sample,
cell_group,
count,
cores =1

)

Note!
If counts are available, do not use proportion.
Using proportion ignores the high uncertainty of low counts

estimate_proportion <- sccomp_estimate(
counts_obj,
~ type,
~-|,
sample,
cell_group,
proportion,
cores = 1

16

sccomp_predict

sccomp_predict

sccomp_predict

Description

This function replicates counts from a real-world dataset.

Usage

sccomp_predict(

fit,

formula_composition = NULL,

new_data

NULL,

number_of_draws = 500,
mcmc_seed = sample(1e+05, 1),
summary_instead_of_draws = TRUE

Arguments

fit

The result of sccomp_estimate.

formula_composition

new_data

number_of_draws

mcmc_seed

A formula. The formula describing the model for differential abundance, for ex-
ample ~treatment. This formula can be a sub-formula of your estimated model;
in this case all other factor will be factored out.

A sample-wise data frame including the column that represent the factors in your
formula. If you want to predict proportions for 10 samples, there should be 10
rows. T

An integer. How may copies of the data you want to draw from the model joint
posterior distribution.

An integer. Used for Markov-chain Monte Carlo reproducibility. By default a
random number is sampled from 1 to 999999. This itself can be controlled by
set.seed()

summary_instead_of_draws

Return the summary values (i.e. mean and quantiles) of the predicted propor-
tions, or return single draws. Single draws can be helful to better analyse the
uncertainty of the prediction.

sccomp_proportional_fold_change 17

Value
A tibble (tbl) with the following columns:

* cell_group - A character column representing the cell group being tested.
» sample - A factor column representing the sample name for which the predictions are made.

 proportion_mean - A numeric column representing the predicted mean proportions from the
model.

* proportion_lower - A numeric column representing the lower bound (2.5%) of the 95% cred-
ible interval for the predicted proportions.

* proportion_upper - A numeric column representing the upper bound (97.5%) of the 95%
credible interval for the predicted proportions.

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages(”"cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists() && .Platform$0S.type == "unix") {
data("counts_obj")

sccomp_estimate(

counts_obj,
~ type, ~1, sample, cell_group, count,
cores = 1

) 1>

sccomp_predict()

3

sccomp_proportional_fold_change
Calculate Proportional Fold Change from sccomp Estimated Effects

Description

This function calculates the proportional fold change between two conditions using the estimated
effects from a sccomp model. The fold changes are derived from the model’s posterior predictions
rather than raw counts, providing a more robust estimate that accounts for the model’s uncertainty
and covariate effects.

Note! This statistic is descriptive and should not be used to define significance - use sccomp_test()
for that. While fold changes in proportions are easier to interpret than changes in logit space,
they are not linear (the same proportional change has different meaning for rare vs abundant cell
types). In contrast, the logit scale used internally by sccomp provides linear effects that are more
appropriate for statistical inference.

18 sccomp_proportional_fold_change

Usage

sccomp_proportional_fold_change(.data, formula_composition, from, to)

Arguments

.data A sccomp estimate object (of class ’sccomp_tbl’) obtained from running sc-
comp_estimate(). This object contains the fitted model and estimated effects.
formula_composition
The formula specifying which model effects to use for calculating fold changes.
This should match or be a subset of the formula used in the original sccomp_estimate()

call.
from Character string specifying the reference/control condition (e.g., "benign").
to Character string specifying the comparison condition (e.g., "cancer").

Value
A tibble with the following columns:

e cell_group - The cell group identifier

* proportion_fold_change - The estimated fold change in proportions between conditions. Pos-
itive values indicate increases, negative values indicate decreases.

* average_uncertainty - The average uncertainty in the fold change estimate, derived from the
credible intervals

* statement - A text description of the fold change, including the direction and the estimated
proportions

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages("cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
Load example data
data("counts_obj")

First estimate the composition effects
estimate <- sccomp_estimate(

counts_obj,
~ type,

~-|,
sample,
cell_group,
count,
cores = 1

sccomp_remove_outliers 19

Calculate proportional fold changes from the estimated effects
estimate |>
sccomp_proportional_fold_change(

formula_composition = ~ type,
from = "benign"”,
to = "cancer”

sccomp_remove_outliers
sccomp_remove_outliers main

Description

The sccomp_remove_outliers function takes as input a table of cell counts with columns for cell-
group identifier, sample identifier, integer count, and factors (continuous or discrete). The user
can define a linear model using an input R formula, where the first factor is the factor of interest.
Alternatively, sccomp accepts single-cell data containers (e.g., Seurat, SingleCellExperiment, cell
metadata, or group-size) and derives the count data from cell metadata.

Usage

sccomp_remove_outliers(
.estimate,
percent_false_positive = 5,
cores = detectCores(),
inference_method = attr(.estimate, "inference_method"),
output_directory = "sccomp_draws_files"”,
verbose = TRUE,
mcmc_seed = sample(le+05, 1),
max_sampling_iterations = 20000,
enable_loo = FALSE,
sig_figs = 9,
approximate_posterior_inference = NULL,
variational_inference = NULL,

Arguments

.estimate A tibble including a cell_group name column, sample name column, read counts
column (optional depending on the input class), and factor columns.
percent_false_positive
A real number between 0 and 100 (not inclusive), used to identify outliers with
a specific false positive rate.

20

sccomp_remove_outliers

cores Integer, the number of cores to be used for parallel calculations.
inference_method
Character string specifying the inference method to use (’pathfinder’, *hmc’, or
’variational’).
output_directory
A character string specifying the output directory for Stan draws.
verbose Logical, whether to print progression details.
mcmc_seed Integer, used for Markov-chain Monte Carlo reproducibility. By default, a ran-
dom number is sampled from 1 to 999999.
max_sampling_iterations
Integer, limits the maximum number of iterations in case a large dataset is used,
to limit computation time.
enable_loo Logical, whether to enable model comparison using the R package LOO. This
is useful for comparing fits between models, similar to ANOVA.
sig_figs Number of significant figures to use for Stan model output. Default is 9.
approximate_posterior_inference
DEPRECATED, use the variational_inference argument.
variational_inference
DEPRECATED Logical, whether to use variational Bayes for posterior infer-
ence. It is faster and convenient. Setting this argument to FALSE runs full
Bayesian (Hamiltonian Monte Carlo) inference, which is slower but the gold
standard.

Additional arguments passed to the cmdstanr: : sample function.

Value

A tibble (tbl), with the following columns:

* cell_group - The cell groups being tested.

» parameter - The parameter being estimated from the design matrix described by the input
formula_composition and formula_variability.

* factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or
contrasts).

* c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
* c_effect - Mean of the posterior distribution for a composition (c) parameter.
* c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.

* c_n_eff - Effective sample size, the number of independent draws in the sample. The higher,
the better.

* ¢_R_k_hat - R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.

* v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
* v_effect - Mean of the posterior distribution for a variability (v) parameter.

* v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.
* v_n_eff - Effective sample size for a variability (v) parameter.

* v_R_k_hat - R statistic for a variability (v) parameter, a measure of chain equilibrium.

* count_data - Nested input count data.

sccomp_remove_unwanted_variation 21

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages(”"cmdstanr”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimate = sccomp_estimate(

counts_obj,
~ type,
~1’
sample,
cell_group,
count,
cores =1

) 1>

sccomp_remove_outliers(cores = 1)

}

sccomp_remove_unwanted_variation
sccomp_remove_unwanted_variation

Description

This function uses the model to remove unwanted variation from a dataset using the estimates of
the model. For example, if you fit your data with the formula ~ factor_1 + factor_2 and use the
formula ~ factor_1 to remove unwanted variation, the factor_2 effect will be factored out.

Usage

sccomp_remove_unwanted_variation(
.data,
formula_composition_keep = NULL,
formula_composition = NULL,
formula_variability = NULL,
cores = detectCores()

Arguments

.data A tibble. The result of sccomp_estimate.

22 sccomp_remove_unwanted_variation

formula_composition_keep
A formula. The formula describing the model for differential abundance, for
example ~type. In this case, only the effect of the type factor will be preserved,
while all other factors will be factored out.

formula_composition
DEPRECATED. Use formula_composition_keep instead.

formula_variability
DEPRECATED. Use formula_variability_keep instead.

cores Integer, the number of cores to be used for parallel calculations.

Value

A tibble (tbl) with the following columns:

» sample - A character column representing the sample name for which data was adjusted.
* cell_group - A character column representing the cell group being tested.

 adjusted_proportion - A numeric column representing the adjusted proportion after remov-
ing unwanted variation.

* adjusted_counts - A numeric column representing the adjusted counts after removing un-
wanted variation.

* logit_residuals - A numeric column representing the logit residuals calculated after adjust-
ment.

Examples
print(”"cmdstanr is needed to run this example.”)

Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages(”"cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimates = sccomp_estimate(

counts_obj,
~ type, ~1, sample, cell_group, count,
cores = 1

) 1>

sccomp_remove_unwanted_variation()

3

sccomp_replicate 23

sccomp_replicate sccomp_replicate

Description

This function replicates counts from a real-world dataset.

Usage

sccomp_replicate(
fit,
formula_composition = NULL,
formula_variability = NULL,
number_of_draws = 1,
mcmc_seed = sample(le+@5, 1)

Arguments

fit The result of sccomp_estimate.

formula_composition
A formula. The formula describing the model for differential abundance, for ex-
ample ~treatment. This formula can be a sub-formula of your estimated model;
in this case all other factor will be factored out.

formula_variability
A formula. The formula describing the model for differential variability, for
example ~treatment. In most cases, if differentially variability is of interest,
the formula should only include the factor of interest as a large anount of data
is needed to define variability depending to each factors. This formula can be a
sub-formula of your estimated model; in this case all other factor will be factored
out.

number_of_draws
An integer. How may copies of the data you want to draw from the model joint
posterior distribution.

mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a
random number is sampled from 1 to 999999. This itself can be controlled by
set.seed()

Value

A tibble tbl with cell_group-wise statistics
A tibble (tbl), with the following columns:

* cell_group - A character column representing the cell group being tested.

» sample - A factor column representing the sample name from which data was generated.

24 sccomp_test

* generated_proportions - A numeric column representing the proportions generated from the
model.

* generated_counts - An integer column representing the counts generated from the model.

* replicate - An integer column representing the replicate number, where each row corresponds
to a different replicate of the data.

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages(”"cmdstanr”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists() && .Platform$0S.type == "unix") {
data("counts_obj")

sccomp_estimate(

counts_obj,
~ type, ~1, sample, cell_group, count,
cores =1

) 1>

sccomp_replicate()

}
sccomp_test sccomp_test
Description

This function test contrasts from a sccomp result.

Usage

sccomp_test(
.data,
contrasts = NULL,
percent_false_positive = 5,
test_composition_above_logit_fold_change = 0.1,
pass_fit = TRUE

)
Arguments
.data A tibble. The result of sccomp_estimate.
contrasts A vector of character strings. For example if your formula is ~ @ + treatment

and the factor treatment has values yes and no, your contrast could be "con-
strasts = c(treatmentyes - treatmentno)".

sccomp_test 25

percent_false_positive

A real between 0 and 100 non included. This used to identify outliers with a
specific false positive rate.

test_composition_above_logit_fold_change

A positive integer. It is the effect threshold used for the hypothesis test. A value
of 0.2 correspond to a change in cell proportion of 10% for a cell type with
baseline proportion of 50%. That is, a cell type goes from 45% to 50%. When
the baseline proportion is closer to O or 1 this effect thrshold has consistent value
in the logit uncontrained scale.

pass_fit A boolean. Whether to pass the Stan fit as attribute in the output. Because the

Value

Stan fit can be very large, setting this to FALSE can be used to lower the memory
imprint to save the output.

A tibble (tbl), with the following columns:

#7

cell_group - The cell groups being tested.

parameter - The parameter being estimated from the design matrix described by the input
formula_composition and formula_variability.

factor - The covariate factor in the formula, if applicable (e.g., not present for Intercept or
contrasts).

c_lower - Lower (2.5%) quantile of the posterior distribution for a composition (c) parameter.
c_effect - Mean of the posterior distribution for a composition (c) parameter.
c_upper - Upper (97.5%) quantile of the posterior distribution for a composition (c) parameter.

c_pHO - Probability of the c_effect being smaller or bigger than the test_composition_above_logit_fold_change
argument.

c_FDR - False discovery rate of the c_effect being smaller or bigger than the test_composition_above_logit_fold_c
argument. False discovery rate for Bayesian models is calculated differently from frequentists
models, as detailed in Mangiola et al, PNAS 2023.

c_n_eff - Effective sample size, the number of independent draws in the sample. The higher,
the better.

c¢_R_k_hat - R statistic, a measure of chain equilibrium, should be within 0.05 of 1.0.
v_lower - Lower (2.5%) quantile of the posterior distribution for a variability (v) parameter.
v_effect - Mean of the posterior distribution for a variability (v) parameter.

v_upper - Upper (97.5%) quantile of the posterior distribution for a variability (v) parameter.

v_pHO - Probability of the v_effect being smaller or bigger than the test_composition_above_logit_fold_change
argument.

v_FDR - False discovery rate of the v_effect being smaller or bigger than the test_composition_above_logit_fold_
argument. False discovery rate for Bayesian models is calculated differently from frequentists
models, as detailed in Mangiola et al, PNAS 2023.

v_n_eff - Effective sample size for a variability (v) parameter.
v_R_k_hat - R statistic for a variability (v) parameter, a measure of chain equilibrium.
count_data - Nested input count data.

26 sce_obj

Examples

print("cmdstanr is needed to run this example."”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages("cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")

estimates = sccomp_estimate(
counts_obj,
~ Q@ + type, ~1, sample, cell_group, count,

cores =1
) 1>
sccomp_test("typecancer - typebenign”)
}
sce_obj sce_obj
Description

Example SingleCellExperiment object containing gene expression data for 106,297 cells across
two assays: counts and logcounts. The object includes metadata and assay data for RNA expression,
which can be used directly in differential analysis functions like sccomp_glm.

Usage
data(sce_obj)

Format
A SingleCellExperiment object with the following structure:
 assays: Two assays: counts (raw RNA counts) and logcounts (log-transformed counts).

* rowData: No additional row-level metadata is present.

* colData: Metadata for each cell, including six fields: sample, type, nFeature_RNA, ident, and
others.

e dim: 1 feature and 106,297 cells.
¢ colnames: Cell identifiers for all 106,297 cells.

Value

A SingleCellExperiment object containing single-cell RNA expression data.

seurat_obj 27

seurat_obj seurat_obj

Description

Example Seurat object containing gene expression data for 106,297 cells across a single assay.
The object includes RNA counts and data layers, but no variable features are defined. This dataset
can be directly used with functions like sccomp_glm for differential abundance analysis.

Usage

data(seurat_obj)

Format
A Seurat object with the following structure:

 assays: Contains gene expression data. The active assay is RNA, with 1 feature and no variable
features.

* layers: Two layers: counts and data, representing raw and processed RNA expression values,
respectively.

» samples: 106,297 samples (cells) within the RNA assay.

Value

A Seurat object containing single-cell RNA expression data.

simulate_data simulate_data

Description

This function simulates counts from a linear model.

Usage

simulate_data(
.data,
.estimate_object,
formula_composition,
formula_variability = NULL,
.sample = NULL,
.cell_group = NULL,
.coefficients = NULL,
variability_multiplier = 5,

28 simulate_data

number_of_draws = 1,
mcmc_seed = sample(le+05, 1),
cores = detectCores(),
sig_figs = 9

Arguments

.data A tibble including a cell_group name column | sample name column | read
counts column | factor columns | Pvalue column | a significance column

.estimate_object
The result of sccomp_estimate execution. This is used for sampling from real-
data properties.

formula_composition
A formula. The sample formula used to perform the differential cell_group
abundance analysis

formula_variability
A formula. The formula describing the model for differential variability, for
example ~treatment. In most cases, if differentially variability is of interest, the
formula should only include the factor of interest as a large anount of data is
needed to define variability depending to each factors.

.sample A column name as symbol. The sample identifier
.cell_group A column name as symbol. The cell_group identifier

.coefficients The column names for coefficients, for example, c(b_0, b_1)
variability_multiplier
A real scalar. This can be used for artificially increasing the variability of the
simulation for benchmarking purposes.
number_of_draws
An integer. How may copies of the data you want to draw from the model joint
posterior distribution.

mcmc_seed An integer. Used for Markov-chain Monte Carlo reproducibility. By default a
random number is sampled from 1 to 999999. This itself can be controlled by
set.seed)#’ @param cores Integer, the number of cores to be used for parallel

calculations.
cores Integer, the number of cores to be used for parallel calculations.
sig_figs Number of significant figures to use for Stan model output. Default is 9.

Value

A tibble (tbl) with the following columns:

» sample - A character column representing the sample name.
* type - A factor column representing the type of the sample.
* phenotype - A factor column representing the phenotype in the data.

* count - An integer column representing the original cell counts.

simulate_data 29

¢ cell_group - A character column representing the cell group identifier.
* b_0 - A numeric column representing the first coefficient used for simulation.
* b_1 - A numeric column representing the second coefficient used for simulation.

* generated_proportions - A numeric column representing the generated proportions from the
simulation.

 generated_counts - An integer column representing the generated cell counts from the simu-
lation.

* replicate - An integer column representing the replicate number for each draw from the pos-
terior distribution.

Examples

print(”"cmdstanr is needed to run this example.”)
Note: Before running the example, ensure that the 'cmdstanr' package is installed:
install.packages("cmdstanr"”, repos = c("https://stan-dev.r-universe.dev/", getOption("repos”)))

if (instantiate::stan_cmdstan_exists()) {
data("counts_obj")
library(dplyr)

estimate = sccomp_estimate(

counts_obj,
~ type, ~1, sample, cell_group, count,
cores = 1

)

Set coefficients for cell_groups. In this case all coefficients are @ for simplicity.
counts_obj = counts_obj |> mutate(b_0 = @, b_1 = 0)

Simulate data
simulate_data(counts_obj, estimate, ~type, ~1, sample, cell_group, c(b_0, b_1))

}

Index

+ datasets
counts_obj, 2
multipanel_theme, 4
no_significance_df, 4
sce_obj, 26
seurat_obj, 27

counts_obj, 2
get_output_samples, 3
multipanel_theme, 4
no_significance_df, 4

plot.sccomp_tbl, 5
plot_1D_intervals, 6
plot_2D_intervals, 7
plot_scatterplot, 8

sccomp_boxplot, 9
sccomp_calculate_residuals, 11
sccomp_estimate, 12
sccomp_predict, 16
sccomp_proportional_fold_change, 17
sccomp_remove_outliers, 19
sccomp_remove_unwanted_variation, 21
sccomp_replicate, 23

sccomp_test, 24

sce_obj, 26

seurat_obj, 27

simulate_data, 27

30

	counts_obj
	get_output_samples
	multipanel_theme
	no_significance_df
	plot.sccomp_tbl
	plot_1D_intervals
	plot_2D_intervals
	plot_scatterplot
	sccomp_boxplot
	sccomp_calculate_residuals
	sccomp_estimate
	sccomp_predict
	sccomp_proportional_fold_change
	sccomp_remove_outliers
	sccomp_remove_unwanted_variation
	sccomp_replicate
	sccomp_test
	sce_obj
	seurat_obj
	simulate_data
	Index

