Package ‘scDiagnostics’

October 16, 2025

Type Package
Title Cell type annotation diagnostics
Version 1.2.0

Description The scDiagnostics package provides diagnostic plots to
assess the quality of cell type assignments from single cell gene
expression profiles. The implemented functionality allows to
assess the reliability of cell type annotations, investigate gene
expression patterns, and explore relationships between different
cell types in query and reference datasets allowing users to
detect potential misalignments between reference and query
datasets. The package also provides visualization capabilities for
diagnostics purposes.

License Artistic-2.0
URL https://github.com/ccb-hms/scDiagnostics

BugReports https://github.com/ccb-hms/scDiagnostics/issues
Depends R (>=4.4.0)

Imports SingleCellExperiment, methods, isotree, ggplot2, ggridges,
SummarizedExperiment, ranger, transport, speedglm, cramer,
rlang, bluster, patchwork

Suggests AUCell, BiocStyle, knitr, Matrix, rmarkdown, scran, scRNAseq,
SingleR, celldex, scuttle, scater, dplyr, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews Annotation, Classification, Clustering, GeneExpression,
RNASeq, SingleCell, Software, Transcriptomics

Encoding UTF-8

LazyDataCompression xz

RoxygenNote 7.3.2

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/scDiagnostics
git_branch RELEASE_3_21

https://github.com/ccb-hms/scDiagnostics
https://github.com/ccb-hms/scDiagnostics/issues

git_last_commit 1¢9a005

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

Author Anthony Christidis [aut, cre] (ORCID:

<https://orcid.org/0000-0002-4565-6279>),

Andrew Ghazi [aut],
Smriti Chawla [aut],
Nitesh Turaga [ctb],

Ludwig Geistlinger [aut],
Robert Gentleman [aut]

Maintainer Anthony Christidis <anthony-alexander_christidis@hms.harvard.edu>

Contents

scDiagnostics-package Lo
adjustPValues L
argumentCheck L
boxplotPCA
calculateAveragePairwiseCorrelation,
calculateCategorizationEntropy o
calculateCellDistances
calculateCellDistancesSimilarity
calculateCellSimilarityPCA
calculateCramerPValue o
calculateDiscriminantSpace
calculateHotellingPValue
calculateHVGOverlap o
calculateNearestNeighborProbabilities
calculateSIRSpace
calculateVarImpOverlap oo
calculateWassersteinDistanceo Lo
calculate_entropy L
compareCCA e e
comparePCA e
comparePCASubspace o o
conditionalMeans e
detectAnomaly L.
generateColors e
histQCvsAnnotation e e e
hotellingT2
inverse_normal_trans Lo oo
ledoitWolf
n_elements e e,
plot.calculateWassersteinDistanceObject
plotregressPCObject L.

Contents

https://orcid.org/0000-0002-4565-6279

scDiagnostics-package 3

plotCellTypeMDS e e e e 57
plotCellTypePCA o e 58
plotGeneExpressionDimred L L 60
plotGeneSetScores 61
plotMarkerExpression e e 62
plotPairwiseDistancesDensity L oL 63
plotQCvVSANNOtation e e e e e e 65
projectPCA 66
projectSIR e 68
qge_data ... e 70
query_data. e e e e e 71
reference_data e 72
Index 74

scDiagnostics-package scDiagnostics: Single-Cell Diagnostics Package

Description

‘scDiagnostics‘ is a comprehensive toolkit designed for the analysis and diagnostics of single-cell
RNA sequencing (scRNA-seq) data. This package provides functionalities for comparing princi-
pal components, visualizing canonical correlation analysis (CCA) outputs, and plotting cell type-
specific MDS and PCA projections.

Details

The package includes the following key functionalities, organized by their specific purposes:

Visualization of Cell Type Annotations

Functions for visualizing differences between query and reference datasets across multiple cell
types.
* boxplotPCA: Boxplots of PCA scores for cell types.

* calculateDiscriminantSpace: Calculates discriminant space, with a plot method for visu-
alization.

e plotCellTypeMDS: Creates MDS plots for cell types using query and reference datasets.
* plotCellTypePCA: Plots principal components for different cell types.

Visualization of Marker Expressions

Functions for to visualize and compare the expression of markers between a reference and a query
dataset.

* plotGeneExpressionDimred: Plots gene expression in a dimensionality reduction space.

* plotMarkerExpression: Plots marker expression levels.

4 scDiagnostics-package

Visualization of QC and Annotation Scores

Functions for visualizing quality control (QC) metrics or other characteristics of the data.

* histQCvsAnnotation: Plots histograms of QC metrics versus annotations.
* plotGeneSetScores: Plots scores of gene sets.

¢ plotQCvsAnnotation: Plots QC metrics versus annotations.

Evaluation of Dataset Alignment

Functions for visualizing differences between query and reference datasets for a specific cell type.

* compareCCA: Compares CCA results, with a plot method for visualization.

» comparePCA: Compares PCA results, with a plot method for visualization.

* comparePCASubspace: Compares PCA subspace, with a plot method for visualization.
* plotPairwiseDistancesDensity: Plots the density of pairwise distances.

* calculateWassersteinDistance: Wasserstein distance for different cell types.

Evaluation of Marker Gene Alignment

Functions for calculating overlap measures of genes between two datasets.

* calculateHVGOverlap: Calculates overlap of highly variable genes (HVG) between datasets.

* calculateVarImpOverlap: Calculates overlap of variable importance measures between datasets.

Calculation of Statistical Measures to Compare Two Datasets

Functions to compute statistical measures to compare two datasets.

* calculateCramerPValue: Calculates the p-value using Cramer’s V.
* calculateHotellingPValue: Calculates the p-value using Hotelling’s T-squared test.

* calculateNearestNeighborProbabilities: Calculates nearest neighbor probabilities, with
a plot method for visualization.

e calculateAveragePairwiseCorrelation: Calculates average pairwise correlation, with a
plot method for visualization.

* regressPC: Performs regression on principal components, with a plot method for visualiza-
tion.

Anomaly Detection (Global and Cell Type-Specific)

Functions for detecting anomalies at both the global and cell type-specific levels.

* detectAnomaly: Detects anomalies in the data, with a plot method for visualization.

e calculateCellSimilarityPCA: Calculates cell similarity in PCA space, with a plot method
for visualization.

scDiagnostics-package 5

Calculation of Distances Between Specific Cells and Cell Populations

Functions for calculating distances between specific cells and cell populations.

» calculateCellDistances: Calculates distances between cells, with a plot method for visu-
alization.

* calculateCellDistancesSimilarity: Calculates similarity based on cell distances, with a
plot method for visualization.
Misc
Miscellaneous functions for various tasks.

* projectPCA: Projects new data into PCA space.

* calculateCategorizationEntropy: Calculates categorization entropy for clusters.

The package is built to facilitate in-depth analysis and visualization of single-cell data, enhancing
the understanding of cell type similarities and differences across datasets.

Author(s)

Maintainer: Anthony Christidis <anthony-alexander_christidis@hms.harvard.edu> (OR-
CID)

Authors:

e Andrew Ghazi
e Smriti Chawla
* Ludwig Geistlinger

¢ Robert Gentleman
Other contributors:

* Nitesh Turaga [contributor]

See Also

Useful links:

* https://github.com/ccb-hms/scDiagnostics

* Report bugs at https://github.com/ccb-hms/scDiagnostics/issues

https://orcid.org/0000-0002-4565-6279
https://orcid.org/0000-0002-4565-6279
https://github.com/ccb-hms/scDiagnostics
https://github.com/ccb-hms/scDiagnostics/issues

6 adjustPValues

adjustPValues Adjust P-Values in Regression Results

Description

Adjusts the p-values in the regression results using a specified adjustment method. The adjustment
is performed either for each principal component (PC) by cell type or for each dataset, depending
on the selected independent variable.

Usage

adjustPValues(
regress_res,
adjust_method = c("BH", "holm"”, "hochberg”, "hommel”, "bonferroni", "BY", "fdr",

”noneﬂ) ,
indep_var = c("cell_type"”, "dataset")
)
Arguments
regress_res A list containing regression results. The structure of the list depends on the

indep_var argument: if indep_var is "cell_type", the list should contain re-
gression summaries for each principal component (PC); if indep_var is "dataset",
it should contain summaries for each dataset.

adjust_method A character string specifying the method to adjust the p-values. Options include
"BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr", or "none".
Default is "BH" (Benjamini-Hochberg). Default is "BH".

indep_var A character string specifying the independent variable for the adjustment. Op-
tions are "cell_type" (default) or "dataset".
Details

This function adjusts p-values from regression results stored in a list. The adjustment can be applied
either across cell types or datasets, depending on the user’s choice. The method for adjusting p-
values can be selected from various options such as Benjamini-Hochberg (BH), Holm, and others,
which are supported by the “p.adjust‘ function in R.

Value

A list similar to regress_res, but with an added column for adjusted p-values in the coefficients
tables.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

argumentCheck 7

argumentCheck Argument Validation for SingleCellExperiment Analysis

Description

This function validates the input arguments for functions that analyze SingleCellExperiment ob-
jects. It checks that the inputs are of the correct types and formats, and that required columns and
cell types are present in the data.

Usage

argumentCheck (
query_data = NULL,
reference_data = NULL,
query_cell_type_col = NULL,
ref_cell_type_col = NULL,
cell_types = NULL,
unique_cell_type = FALSE,
plot_function = FALSE,
cell_names_query = NULL,
cell_names_ref = NULL,
pc_subset_query = NULL,
pc_subset_ref = NULL,
common_rotation_genes = FALSE,
assay_name = NULL

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If ‘NULL", no check is performed.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells. If ‘NULL", no check is performed.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
If ‘NULL", no check is performed.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types. If ‘NULL', no check is performed.

cell_types A character vector specifying the cell types to include in the plot. If ‘NULL,
no check is performed.

unique_cell_type
If “TRUE', there should only be one cell type in the provided SingleCellExperiment
objectss. Default is ‘FALSE".

plot_function A logical value indicating whether the function is being called to generate a plot.
Default is ‘FALSE".

8 argumentCheck

cell_names_query
A character vector of cell names in query data to be analyzed. If ‘NULL*, no
check is performed.

cell_names_ref A character vector of cell names in reference data to be analyzed. If ‘NULL",
no check is performed.

pc_subset_query
A numeric vector specifying the principal components to be used for the query
data. If ‘NULL", no check is performed.

pc_subset_ref A numeric vector specifying the principal components to be used for the refer-
ence data. If ‘NULL’, no check is performed.

common_rotation_genes
If TRUE, check the rotation matrices of the reference and query data and ensure
they have the same genes. Default is FALSE.

assay_name Name of the assay on which to perform computations. If ‘NULL*, no check is
performed.

Details

The function performs a series of checks to ensure that:

e ‘query_data‘ and ‘reference_data‘ are SingleCellExperiment objects.

* ‘query_cell_type_col® and ‘ref_cell_type_col‘ exist in the column data of their respective
SingleCellExperiment objects.

* The specified ‘cell_types* are available in the provided datasets.

o If ‘unique_cell_type* is “TRUE’, there should only be one cell type in the SingleCellExperiment
objects.

o If ‘plot_function® is “TRUE’, the number of unique ‘cell_types‘ does not exceed 10.
* ‘cell_names_query‘ are valid cell names in the provided query dataset.
 ‘cell_names_ref* are valid cell names in the provided reference dataset.

* The PCA subsets specified by ‘pc_subset_query*‘ and ‘pc_subset_ref* are valid.

Value

None.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

boxplotPCA 9

boxplotPCA Plot Principal Components for Different Cell Types

Description

This function generates a ggplot2 boxplot visualization of principal components (PCs) for different
cell types across two datasets (query and reference).

Usage

boxplotPCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,

assay_name = "logcounts”
)
Arguments
guery_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

The function boxplotPCA is designed to provide a visualization of principal component analysis
(PCA) results. It projects the query dataset onto the principal components obtained from the refer-
ence dataset. The results are then visualized as boxplots, grouped by cell types and datasets (query
and reference). This allows for a comparative analysis of the distributions of the principal compo-
nents across different cell types and datasets. The function internally calls projectPCA to perform
the PCA projection. It then reshapes the output data into a long format suitable for ggplot2 plotting.

10 calculateAveragePairwiseCorrelation

Value

A ggplot object representing the boxplots of specified principal components for the given cell types
and datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

pc_plot <- boxplotPCA(query_data = query_data,
reference_data = reference_data,
cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:6)

pc_plot

calculateAveragePairwiseCorrelation
Compute Average Pairwise Correlation between Cell Types

Description

Computes the average pairwise correlations between specified cell types in single-cell gene expres-
sion data.

The S3 plot method takes the output of the ‘calculateAveragePairwiseCorrelation® function, which
should be a matrix of pairwise correlations, and plots it as a heatmap.

Usage

calculateAveragePairwiseCorrelation(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:10,
correlation_method = c("spearman”, "pearson"),
assay_name = "logcounts”

calculateAveragePairwiseCorrelation 11

S3 method for class 'calculateAveragePairwiseCorrelationObject'
plot(x, ...)

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to use in the analysis.
Default is 1:10. If set to NULL then no dimensionality reduction is performed
and the assay data is used directly for computations.

correlation_method
The correlation method to use for calculating pairwise correlations.

assay_name Name of the assay on which to perform computations. Default is "logcounts".
X Output matrix from ‘calculateAveragePairwiseCorrelation® function.

Additional arguments to be passed to the plotting function.

Details

This function operates on SingleCellExperiment objects, ideal for single-cell analysis workflows.
It calculates pairwise correlations between query and reference cells using a specified correlation
method, then averages these correlations for each cell type pair. This function aids in assessing the
similarity between cells in reference and query datasets, providing insights into the reliability of
cell type annotations in single-cell gene expression data.

The S3 plot method converts the correlation matrix into a dataframe, creates a heatmap using gg-
plot2, and customizes the appearance of the heatmap with updated colors and improved aesthetics.

Value

A matrix containing the average pairwise correlation values. Rows and columns are labeled with
the cell types. Each element in the matrix represents the average correlation between a pair of cell

types.
The S3 plot method returns a ggplot object representing the heatmap plot.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

12 calculateCategorizationEntropy

See Also

plot.calculateAveragePairwiseCorrelationObject

calculateAveragePairwiseCorrelation

Examples

Load data
data("reference_data")
data("query_data")

Compute pairwise correlations
cor_matrix_avg <- calculateAveragePairwiseCorrelation(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_types = c("CD4", "CD8", "B_and_plasma"),
pc_subset = 1:10,
correlation_method = "spearman")

Visualize correlation output
plot(cor_matrix_avg)

calculateCategorizationEntropy
Calculate Categorization Entropy

Description

This function takes a matrix of category scores (cell type by cells) and calculates the entropy of the
category probabilities for each cell. This gives a sense of how confident the cell type assignments
are. High entropy = lots of plausible category assignments = low confidence. Low entropy = only
one or two plausible categories = high confidence. This is confidence in the vernacular sense, not
in the "confidence interval" statistical sense. Also note that the entropy tells you nothing about
whether or not the assignments are correct — see the other functionality in the package for that. This
functionality can be used for assessing how comparatively confident different sets of assignments
are (given that the number of categories is the same).

Usage
calculateCategorizationEntropy(
X,
inverse_normal_transform = FALSE,
plot = TRUE,

verbose = TRUE

calculateCellDistances 13

Arguments

X A matrix of category scores.
inverse_normal_transform
If TRUE, apply inverse normal transformation to X. Default is FALSE.

plot If TRUE, plot a histogram of the entropies. Default is TRUE.
verbose If TRUE, display messages about the calculations. Default is TRUE.
Details

The function checks if X is already on the probability scale. Otherwise, it applies softmax column-
wise.

You can think about entropies on a scale from 0 to a maximum that depends on the number of cat-
egories. This is the function for entropy (minus input checking): entropy(p) = -sum(p*log(p)) .
If that input vector p is a uniform distribution over the length(p) categories, the entropy will be a
high as possible.

Value

A vector of entropy values for each column in X.

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard.edu>

Examples

Simulate 500 cells with scores on 4 possible cell types
X <= rnorm(500 * 4) |> matrix(nrow = 4)
X[1, 1:250] <- X[1, 1:250] + 5 # Make the first category highly scored in the first 250 cells

The function will issue a message about softmaxing the scores, and the entropy histogram will be
bimodal since we made half of the cells clearly category 1 while the other half are roughly even.
entropy_scores <- calculateCategorizationEntropy(X)

calculateCellDistances
Compute Cell Distances Between Reference and Query Data

Description

This function computes the distances within the reference dataset and the distances from each query
cell to all reference cells for each cell type. It uses PCA for dimensionality reduction and Euclidean
distance for distance calculation.

The S3 plot method plots the density functions for the reference data and the distances from a
specified query cells to all reference cell within a specified cell type.

14 calculateCellDistances

Usage

calculateCellDistances(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”

)

S3 method for class 'calculateCellDistancesObject'
plot(x, ref_cell_type, cell_names, ...)

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default 1:5.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

X A list containing the distance data computed by calculatecellDistances.

ref_cell_type A string specifying the reference cell type.
cell_names A string specifying the query cell name for which to plot the distances.

Additional arguments passed to the plotting function.

Details

The function first performs PCA on the reference dataset and projects the query dataset onto the
same PCA space. It then computes pairwise Euclidean distances within the reference dataset for
each cell type, as well as distances from each query cell to all reference cells of a particular cell
type. The results are stored in a list, with one entry per cell type.

The S3 plot method first checks if the specified cell type and cell names are present in the object.
If the specified cell type or cell name is not found, an error is thrown. It then extracts the distances
within the reference dataset and the distances from the specified query cell to the reference cells The
function creates a density plot using ggplot2 to compare the distance distributions. The density plot

calculateCellDistances 15

will show two distributions: one for the pairwise distances within the reference dataset and one for
the distances from the specified query cell to each reference cell. These distributions are plotted in
different colors to visually assess how similar the query cell is to the reference cells of the specified
cell type.

Value
A list containing distance data for each cell type. Each entry in the list contains:

ref_distances A vector of all pairwise distances within the reference subset for the cell type.

query_to_ref_distances A matrix of distances from each query cell to all reference cells for the
cell type.

The S3 plot method returns a ggplot density plot comparing the reference distances and the dis-
tances from the specified cell to the reference cells.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateCellDistancesObject

calculateCellDistances

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

distance_data <- calculateCellDistances(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

Identify outliers for CD4
cd4_anomalies <- detectAnomaly(reference_data = reference_data,
query_data = query_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,

n_tree = 500,

anomaly_treshold = 0.5)
cd4_top6_anomalies <- names(sort(cd4_anomalies$CD4$query_anomaly_scores, decreasing = TRUE)[1:6])

Plot the densities of the distances
plot(distance_data, ref_cell_type = "CD4", cell_names = cd4_top6_anomalies)
plot(distance_data, ref_cell_type = "CD8", cell_names = cd4_top6_anomalies)

16 calculateCellDistancesSimilarity

calculateCellDistancesSimilarity

Function to Calculate Bhattacharyya Coefficients and Hellinger Dis-
tances

Description

This function computes Bhattacharyya coefficients and Hellinger distances to quantify the similarity
of density distributions between query cells and reference data for each cell type.

Usage

calculateCellDistancesSimilarity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,

cell_names,
pc_subset = 1:5,
assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_names A character vector specifying the names of the query cells for which to compute
distance measures.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is 1:5.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

This function first computes distance data using the calculateCellDistances function, which
calculates pairwise distances between cells within the reference data and between query cells and
reference cells in the PCA space. Bhattacharyya coefficients and Hellinger distances are calculated
to quantify the similarity of density distributions between query cells and reference data for each

calculateCellDistancesSimilarity 17

cell type. Bhattacharyya coefficient measures the similarity of two probability distributions, while
Hellinger distance measures the distance between two probability distributions.

Bhattacharyya coefficients range between 0 and 1. A value closer to 1 indicates higher similarity
between distributions, while a value closer to 0 indicates lower similarity

Hellinger distances range between 0 and 1. A value closer to O indicates higher similarity between
distributions, while a value closer to 1 indicates lower similarity.

Value
A list containing distance data for each cell type. Each entry in the list contains:

ref_distances A vector of all pairwise distances within the reference subset for the cell type.

query_to_ref distances A matrix of distances from each query cell to all reference cells for the
cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data

distance_data <- calculateCellDistances(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

Identify outliers for CD4
cd4_anomalies <- detectAnomaly(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,
n_tree = 500,
anomaly_treshold = 0.5)
cd4_top6_anomalies <- names(sort(cd4_anomalies$CD4$query_anomaly_scores, decreasing = TRUE)[1:6])

Get overlap measures
overlap_measures <- calculateCellDistancesSimilarity(query_data = query_data,
reference_data = reference_data,
cell_names = cd4_top6_anomalies,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)
overlap_measures

18 calculateCellSimilarityPCA

calculateCellSimilarityPCA
Calculate Cell Similarity Using PCA Loadings

Description

This function calculates the cosine similarity between cells based on the principal components (PCs)
obtained from PCA (Principal Component Analysis) loadings.

The S3 plot method creates a heatmap plot to visualize the cosine similarities between cells and
principal components (PCs).

Usage

calculateCellSimilarityPCA(
se_object,
cell_names,
pc_subset = 1:5,
n_top_vars = 50,

assay_name = "logcounts”

)

S3 method for class 'calculateCellSimilarityPCAObject'

plot(x, pc_subset = 1:5, ...)

Arguments

se_object A SingleCellExperiment object containing expression data.

cell_names A character vector specifying the cell names for which to compute the similarity.

pc_subset A numeric vector specifying the subset of principal components to include in
the plot. Default is 1:5.

n_top_vars An integer indicating the number of top loading variables to consider for each
PC. Default is 50.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

X An object of class ‘calculateCellSimilarityPCA* containing a dataframe of co-

sine similarity values between cells and PCs.

Additional arguments passed to the plotting function.

Details

This function calculates the cosine similarity between cells based on the loadings of the selected
principal components obtained from PCA. It extracts the rotation matrix from the PCA results of
the SingleCellExperiment object and identifies the high-loading variables for each selected PC.
Then, it computes the cosine similarity between cells using the high-loading variables for each PC.

The S3 plot method reshapes the input data frame to create a long format suitable for plotting as
a heatmap. It then creates a heatmap plot using ggplot2, where the x-axis represents the PCs, the
y-axis represents the cells, and the color intensity represents the cosine similarity values.

calculateCramerPValue 19

Value

A data frame containing cosine similarity values between cells for each selected principal compo-
nent.

The S3 plot method returns a ggplot object representing the cosine similarity heatmap.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateCellSimilarityPCAObject
calculateCellSimilarityPCA

Examples

Load data
data("reference_data")
data("query_data")

Store PCA anomaly data and plots
anomaly_output <- detectAnomaly(reference_data = reference_data,
query_data = query_data,

ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,
pc_subset = 1:10,

n_tree = 500,

anomaly_treshold = 0.5)
top6_anomalies <- names(sort(anomaly_output$Combined$reference_anomaly_scores,
decreasing = TRUE)[1:6])

Compute cosine similarity between anomalies and top PCs
cosine_similarities <- calculateCellSimilarityPCA(reference_data,
cell_names = top6_anomalies,
pc_subset = 1:25,
n_top_vars = 50)
cosine_similarities

Plot similarities
plot(cosine_similarities, pc_subset = 15:25)

calculateCramerPValue Calculate Cramer Test P-Values for Two-Sample Comparison of Mul-
tivariate ECDF's

20 calculateCramerPValue

Description

This function performs the Cramer test for comparing multivariate empirical cumulative distribution
functions (ECDFs) between two samples.

Usage

calculateCramerPValue(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, the PC scores are regressed against the cell types of the
reference data.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS5.
assay_name Name of the assay on which to perform computations. Default is "logcounts"”.
Details

The function performs the following steps:

1. Projects the data into the PCA space.
2. Subsets the data to the specified cell types and principal components.

3. Performs the Cramer test for each cell type using the cramer.test function in the cramer
package.

Value

A named vector of p-values from the Cramer test for each cell type.

calculateDiscriminantSpace 21

References

Baringhaus, L., & Franz, C. (2004). "On a new multivariate two-sample test". Journal of Multivari-
ate Analysis, 88(1), 190-206.

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data (with query data)

cramer_test <- calculateCramerPValue(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,

cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),

pc_subset = 1:5)

cramer_test

calculateDiscriminantSpace
Project Query Data onto Discriminant Space of Reference Data

Description

This function projects query single-cell RNA-seq data onto the discriminant space defined by ref-
erence data. The reference data is used to identify important variables and compute discriminant
vectors, which are then used to project both reference and query data. Similarity between the query
and reference projections is assessed using cosine similarity and Mahalanobis distance.

The S3 plot method plots the projected reference and query data on discriminant spaces.

Usage

calculateDiscriminantSpace(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,

n_tree = 500,

n_top = 20,
eigen_threshold = 0.1,
calculate_metrics = FALSE,
alpha = 0.01,

assay_name = "logcounts”

22

calculateDiscriminantSpace

S3 method for class 'calculateDiscriminantSpaceObject'
plot(x, cell_types, plot_type = c("scatterplot”, "boxplot"), ...)

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the

query_data

reference cells.

A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, only the projected reference data is returned. Default is
NULL.

ref_cell_type_col

The column name in reference_data indicating cell type labels.

query_cell_type_col

cell_types

n_tree

n_top

eigen_threshold

The column name in query_data indicating cell type labels.

A character vector specifying the cell types to plot. If not provided, all cell types
will be plotted.

An integer specifying the number of trees for the random forest used in variable
importance calculation.

An integer specifying the number of top variables to select based on importance
scores.

A numeric value specifying the threshold for retaining eigenvalues in discrimi-
nant analysis.

calculate_metrics

alpha

assay_name

X

plot_type

Details

Parameter to determine if cosine similarity and Mahalanobis distance metrics
should be computed. Default is FALSE.

A numeric value specifying the significance level for Mahalanobis distance cut-
off.

Name of the assay on which to perform computations. Default is "logcounts".

An object of class calculateDiscriminantSpace containing the projected data
on the discriminant space.. Each element of the list represents a combination of
cell types and datasets. Each element should contain "ref_proj’ and ’query_proj’
data frames.

Type of plot to generate. Options are "scatterplot” and "boxplot". Default is
"scatterplot”.

Additional arguments to be passed to the plotting functions.

The function performs the following steps for each pairwise combination of cell types:

* Identifies the top important variables to distinguish the two cell types from the reference data.

» Computes the Ledoit-Wolf shrinkage estimate of the covariance matrix for each cell type using
the top important genes.

¢ Constructs within-class and between-class scatter matrices.

calculateDiscriminantSpace 23

* Solves the generalized eigenvalue problem to obtain discriminant vectors.
* Projects both reference and query data onto the discriminant space.

* Assesses similarity of the query data projection to the reference data using cosine similarity
and Mahalanobis distance.

The S3 plot method generates either a scatterplot or a boxplot to visualize the projected data onto
the discriminant spaces. For scatterplot, each point represents a projected data point, and colors are
used to differentiate between different cell types and datasets. For boxplot, the distribution of the
projected data values for each cell type is shown, separated by datasets.

Value
A list with the following components for each cell type combination:

discriminant_eigenvalues

Eigenvalues from the discriminant analysis.
discriminant_eigenvectors

Eigenvectors from the discriminant analysis.
ref_proj Reference data projected onto the discriminant space.

query_proj Query data projected onto the discriminant space.
query_mahalanobis_dist

Mahalanobis distances of query projections.
mahalanobis_crit

Cutoff value for Mahalanobis distance significance.

query_cosine_similarity
Cosine similarity scores of query projections.

The S3 plot method returns a ggplot object representing the scatterplot or boxplot of the projected
data.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

* Fisher, R. A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". * Annals
of Eugenics*. 7 (2): 179-188. doi:10.1111/j.1469-1809.1936.tb02137 x.

* Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning: Data
Mining, Inference, and Prediction*. Springer. Chapter 4: Linear Methods for Classification.

* Ledoit, O., & Wolf, M. (2004). "A well-conditioned estimator for large-dimensional covari-
ance matrices". *Journal of Multivariate Analysis*. 88 (2): 365-411. doi:10.1016/S0047-
259X(03)00096-4.

¢ De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). "The Mahalanobis dis-
tance". *Chemometrics and Intelligent Laboratory Systems*. 50 (1): 1-18. doi:10.1016/S0169-
7439(99)00047-7.

* Breiman, L. (2001). "Random Forests". *Machine Learning*. 45 (1): 5-32. doi:10.1023/A:1010933404324.

24 calculateHotellingPValue

See Also

plot.calculateDiscriminantSpaceObject

calculateDiscriminantSpace

Examples

Load data
data("reference_data")
data("query_data")

Compute important variables for all pairwise cell comparisons

disc_output <- calculateDiscriminantSpace(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,

ref_cell_type_col = "expert_annotation”,
n_tree = 500,
n_top = 50,

eigen_threshold = Te-1,
calculate_metrics = FALSE,
alpha = 0.01)

Generate scatter and boxplot
plot(disc_output, plot_type = "scatterplot”)
plot(disc_output, cell_types = "CD4-CD8", plot_type = "boxplot")

Check comparison
table(Expert_Annotation = query_data$expert_annotation, SingleR = query_data$SingleR_annotation)

calculateHotellingPValue

Perform Hotelling’s T-squared Test on PCA Scores for Single-cell
RNA-seq Data

Description

Computes Hotelling’s T-squared test statistic and p-values for each specified cell type based on
PCA-projected data from query and reference datasets.

Usage

calculateHotellingPValue(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,

calculateHotellingPValue 25

n_permutation = 500,

assay_name = "logcounts”
)
Arguments
qguery_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies
the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS.

n_permutation Number of permutations to perform for p-value calculation. Default is 500.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

Details

This function calculates Hotelling’s T-squared statistic for comparing multivariate means between
reference and query datasets, projected onto a subset of principal components (PCs). It performs a
permutation test to obtain p-values for each cell type specified.

Value

A named numeric vector of p-values from Hotelling’s T-squared test for each cell type.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Hotelling, H. (1931). "The generalization of Student’s ratio". *Annals of Mathematical Statistics*.
2 (3): 360-378. doi:10.1214/a0ms/1177732979.

Examples

Load data
data("reference_data")
data("query_data")

26 calculateHVGOverlap

Get the p-values

p_values <- calculateHotellingPValue(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

round(p_values, 5)

calculateHVGOverlap Calculate the Overlap Coefficient for Highly Variable Genes

Description

Calculates the overlap coefficient between the sets of highly variable genes from a reference dataset
and a query dataset.

Usage

calculateHVGOverlap(reference_genes, query_genes)

Arguments
reference_genes
A character vector of highly variable genes from the reference dataset.

query_genes A character vector of highly variable genes from the query dataset.

Details

The overlap coefficient measures the similarity between two gene sets, indicating how well-aligned
reference and query datasets are in terms of their highly variable genes. This metric is useful in
single-cell genomics to understand the correspondence between different datasets.

The coefficient is calculated using the formula:

IXNY]

Coef ficient(X,Y) = min(|X],[Y])

where X and Y are the sets of highly variable genes from the reference and query datasets, respec-
tively, | X NY] is the number of genes common to both X and Y, and min(| X, |Y’]) is the size of
the smaller set among X and Y.

Value
Overlap coefficient, a value between 0 and 1, where O indicates no overlap and 1 indicates complete
overlap of highly variable genes between datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

calculateNearestNeighborProbabilities

References

27

Luecken et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods,

19:41-50, 2022.

Examples

Load data
data("reference_data")
data("query_data")

Selecting highly variable genes

ref_var <- scran::getTopHVGs(reference_data, n = 500)

query_var <- scran::getTopHVGs(query_data, n = 500)

overlap_coefficient <- calculateHVGOverlap(reference_genes = ref_var,
query_genes = query_var)

overlap_coefficient

calculateNearestNeighborProbabilities

Calculate Nearest Neighbor Diagnostics for Cell Type Classification

Description

This function computes the probabilities for each query cell of belonging to either the reference or

query dataset for each cell type using nearest neighbor analysis.

The S3 plot method generates a density plot showing the distribution of probabilities for each cell

of belonging to either the reference or query dataset for each cell type.

Usage

calculateNearestNeighborProbabilities(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
n_neighbor = 20,
assay_name = "logcounts”

S3 method for class 'calculateNearestNeighborProbabilitiesObject'
plot(x, cell_types = NULL, ...)

28 calculateNearestNeighborProbabilities

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.
query_cell_type_col

A character string specifying the column name in the query dataset containing
cell type annotations.

ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types in x will be plotted. Default is NULL.

pc_subset A vector specifying the subset of principal components to use in the analysis.
Default is 1:5

n_neighbor An integer specifying the number of nearest neighbors to consider. Default is
20.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

X An object of class nearestNeighbotDiagnostics containing the probabilities

calculated by the calculateNearestNeighborProbabilities function.
Additional arguments to be passed to geom_density.

Details

The function conducts PCA on both the query and reference datasets to reduce dimensionality.
It then compares each query cell to its nearest neighbors in the reference dataset to estimate the
probability of membership in each cell type. Sample sizes between datasets are balanced using data
augmentation if necessary.

The S3 plot method creates a density plot to visualize the distribution of probabilities for each cell
belonging to the reference or query dataset for each cell type. It utilizes the ggplot2 package for
plotting.

Value

A list where each element corresponds to a cell type and contains:

n_neighbor The number of nearest neighbors considered.
n_query The number of cells in the query dataset for each cell type.
query_prob The average probability of each query cell belonging to the reference dataset.

The list is assigned the class "calculateNearestNeighborProbabilities”. Each element in the
list is named after the respective cell type.

The S3 plot method returns a ggplot density plot.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

calculateSIRSpace 29

See Also

plot.calculateNearestNeighborProbabilitiesObject

calculateNearestNeighborProbabilities

Examples

Load data
data("reference_data")
data("query_data")

Project the query data onto PCA space of reference
nn_output <- calculateNearestNeighborProbabilities(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10,
n_neighbor = 20)

Plot output
plot(nn_output, cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"))

calculateSIRSpace Calculate Sliced Inverse Regression (SIR) Space for Different Cell
Types

Description

This function calculates the SIR space projections for different cell types in the query and reference
datasets.

The S3 plot method visualizes the projected reference and query data on discriminant spaces using
either a scatterplot, boxplot, or varplot.

Usage

calculateSIRSpace(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
multiple_cond_means = TRUE,
assay_name = "logcounts”,
cumulative_variance_threshold = 0.7,
n_neighbor = 1

30 calculateSIRSpace

S3 method for class 'calculateSIRSpaceObject'
plot(
X,
plot_type = c("scatterplot”, "boxplot”, "varplot”),
sir_subset = NULL,
n_top_vars = 5,

Arguments

query_data A SingleCellExperiment object containing the numeric expression matrix for
the query cells.

reference_data A SingleCellExperiment object containing the numeric expression matrix for
the reference cells.

query_cell_type_col
A character string specifying the column name in the colData of query_data
that identifies the cell types.

ref_cell_type_col
A character string specifying the column name in the colData of reference_data
that identifies the cell types.

cell_types A character vector specifying the cell types to include in the analysis. If NULL,
all common cell types between the query and reference data will be used.
multiple_cond_means

Logical. Whether to compute conditional means for multiple conditions in the
reference dataset. Default is TRUE.

assay_name A character string specifying the name of the assay on which to perform com-
putations. Default is "logcounts".

cumulative_variance_threshold
A numeric value specifying the cumulative variance threshold for selecting prin-
cipal components. Default is 0.7.

n_neighbor A numeric value specifying the number of neighbors for computing the SIR
space. Default is 1.

X An object of class calculateSIRSpace, which contains projected data on the
discriminant space. Each element should include 'ref proj’ and ’query_proj’
data frames representing reference and query projections.

plot_type A character string indicating the type of plot to generate. Options are "scatter-
plot", "boxplot", or "varplot". Default is "scatterplot”.

sir_subset A numeric vector specifying which discriminant axes (SIR components) to in-
clude in the plot. Default is the first 5 axes.

n_top_vars Number of top contributing variables to display in varplot. Default is 5.

Additional arguments to be passed to the plotting functions.

calculateSIRSpace 31

Details

The function projects the query dataset onto the SIR space of the reference dataset based on shared
cell types. It computes conditional means for the reference dataset, extracts the SVD components,
and performs the projection of both the query and reference data. It uses the ‘projectSIR* function
to perform the actual projection and allows the user to specify particular cell types for analysis.

- **Scatterplot**: Displays projected data points, with colors used to differentiate between cell
types and datasets. - **Boxplot**: Shows the distribution of projected data values for each cell type,
separated by datasets. - **Varplot**: Highlights the top contributing variables for each discriminant
axis, differentiating between positive and negative loadings.

Value

A list containing the SIR projections, rotation matrix, and percentage of variance explained for the
given cell types.

A ggplot object representing the chosen visualization (scatterplot, boxplot, or varplot) of the pro-
jected data.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.calculateSIRSpaceObject

calculateSIRSpace

Examples

Load data
data("reference_data")
data("query_data")

Compute important variables for all pairwise cell comparisons

sir_output <- calculateSIRSpace(reference_data = reference_data,
query_data = query_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
multiple_cond_means = TRUE,
cumulative_variance_threshold = 0.9,
n_neighbor = 1)

Generate boxplot of SIR projections
plot(sir_output, plot_type = "boxplot”, sir_subset = 1:6)

32

calculate VarImpOverlap

calculateVarImpOverlap

Compare Gene Importance Across Datasets Using Random Forest

Description

This function identifies and compares the most important genes for differentiating cell types be-
tween a query dataset and a reference dataset using Random Forest.

Usage

calculateVarImpOverlap(
reference_data,

query_data =

NULL,

ref_cell_type_col,
query_cell_type_col = NULL,

cell_types =
n_tree = 500,
n_top = 50
)
Arguments

reference_data

query_data

NULL,

A SingleCellExperiment object containing numeric expression matrix for the
reference cells.
A SingleCellExperiment object containing numeric expression matrix for the

query cells. If NULL, then the variable importance scores are only computed
for the reference data. Default is NULL.

ref_cell_type_col

A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

query_cell_type_col

cell_types

n_tree

n_top

Details

A character string specifying the column name in the query dataset containing
cell type annotations.

A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

An integer specifying the number of trees to grow in the Random Forest. Default
is 500.

An integer specifying the number of top genes to consider when comparing
variable importance scores. Default is 50.

This function uses the Random Forest algorithm to calculate the importance of genes in differen-
tiating between cell types within both a reference dataset and a query dataset. The function then

compares the top
scores.

genes identified in both datasets to determine the overlap in their importance

calculate WassersteinDistance 33

Value

A list containing three elements:
var_imp_ref A list of data frames containing variable importance scores for each combination
of cell types in the reference dataset.

var_imp_query A list of data frames containing variable importance scores for each combination
of cell types in the query dataset.

var_imp_comparison
A named vector indicating the proportion of top genes that overlap between the

reference and query datasets for each combination of cell types.
Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Breiman, L. (2001). "Random forests". *Machine Learning*, 45(1), 5-32. doi:10.1023/A:1010933404324.

Examples

Load data
data("reference_data")
data("query_data")

Compute important variables for all pairwise cell comparisons
rf_output <- calculateVarImpOverlap(reference_data = reference_data,
query_data = query_data,

query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
n_tree = 500,

n_top = 50)

Comparison table
rf_output$var_imp_comparison

calculateWassersteinDistance

Compute Wasserstein Distances Between Query and Reference
Datasets

Description

This function calculates Wasserstein distances between a query dataset and a reference dataset, as
well as within the reference dataset itself, after projecting them into a shared PCA space.

34 calculate WassersteinDistance

Usage

calculateWassersteinDistance(
query_data,
reference_data,
ref_cell_type_col,
query_cell_type_col,
pc_subset = 1:5,
n_resamples = 300,

assay_name = "logcounts”
)
Arguments
guery_data A SingleCellExperiment object containing a numeric expression matrix for

the query cells.

reference_data A SingleCellExperiment object with a numeric expression matrix for the ref-
erence cells.
ref_cell_type_col
The column name in the colData of reference_data that identifies cell types.
query_cell_type_col
The column name in the colData of query_data that identifies cell types.

pc_subset A numeric vector specifying which principal components to use. Default is
1:10.
n_resamples An integer specifying the number of resamples to generate the null distribution.
Default is 300.
assay_name The name of the assay to use for computations. Default is "logcounts”.
Details

The function begins by projecting the query dataset onto the PCA space defined by the reference
dataset. It then computes Wasserstein distances between randomly sampled pairs within the ref-
erence dataset to create a null distribution. Similarly, it calculates distances between the reference
and query datasets. The function assesses overall differences in distances to understand the variation
between the datasets.

Value

A list with the following components:

null_dist A numeric vector of Wasserstein distances computed from resampled pairs within
the reference dataset.

query_dist The mean Wasserstein distance between the query dataset and the reference
dataset.

cell_type A character vector containing the unique cell types present in the reference

dataset.

calculate_entropy 35

References

Schuhmacher, D., Bernhard, S., & Book, M. (2019). "A Review of Approximate Transport in
Machine Learning". In Journal of Machine Learning Research (Vol. 20, No. 117, pp. 1-61).

See Also

plot.calculateWassersteinDistanceObject

Examples

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_data[, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- scran::getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- scran::getTopHVGs(query_data_subset, n = 500)

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

Run PCA on reference data
ref_data_subset <- scater::runPCA(ref_data_subset)

Compute Wasserstein distances and compare using quantile-based permutation test
wasserstein_data <- calculateWassersteinDistance(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
n_resamples = 100)
plot(wasserstein_data)

calculate_entropy Calculate Entropy

Description

This function calculates the entropy of a probability distribution.

Usage

calculate_entropy(p)

36 compareCCA

Arguments
p A numeric vector representing a probability distribution. The elements should
sum to 1.
Details
The entropy is calculated using the formula — > plog(p), where the sum is over all non-zero ele-
ments of p.
Value

A numeric value representing the entropy of the probability distribution.

compareCCA Compare Canonical Correlation Analysis (CCA) between Query and
Reference Data

Description

This function performs Canonical Correlation Analysis (CCA) between two datasets (query and
reference) after performing PCA on each dataset. It projects the query data onto the PCA space
of the reference data and then computes the cosine similarity of the canonical correlation vectors
between the two datasets.

The S3 plot method generates a visualization of the output from the ‘compareCCA‘ function. The
plot shows the cosine similarities of canonical correlation analysis (CCA) coefficients, with point
sizes representing the correlations.

Usage

compareCCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:5,

assay_name = "logcounts”
)
S3 method for class 'compareCCAObject'
plot(x, ...)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the

query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

compareCCA 37

query_cell_type_col

The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col

The column name in the colData of reference_data that identifies the cell

types.

pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is the first five PCs.

assay_name Name of the assay on which to perform computations. Default is "logcounts".

X A list containing the output from the compareCCA function. This list should

include cosine_similarity and correlations.

Additional arguments passed to the plotting function.

Details

The function performs the following steps: 1. Projects the query data onto the PCA space of the
reference data using the specified number of principal components. 2. Downsamples the datasets to
ensure an equal number of rows for CCA. 3. Performs CCA on the projected datasets. 4. Computes
the cosine similarity between the canonical correlation vectors and extracts the canonical correla-
tions.

The cosine similarity provides a measure of alignment between the canonical correlation vectors of
the two datasets. Higher values indicate greater similarity.

The S3 plot method converts the input list into a data frame suitable for plotting with ggplot2.
Each point in the scatter plot represents the cosine similarity of CCA coefficients, with the size of
the point indicating the correlation.

Value
A list containing the following elements:
coef_ref Canonical coefficients for the reference dataset.
coef_query Canonical coefficients for the query dataset.

cosine_similarity Cosine similarity values for the canonical variables.

correlations Canonical correlations between the reference and query datasets.
The S3 plot method returns a ggplot object representing the scatter plot of cosine similarities of
CCA coefficients and correlations.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Hotelling, H. (1936). "Relations between two sets of variates". *Biometrika*, 28(3/4), 321-377.
doi:10.2307/2333955.

38 comparePCA

See Also

plot.compareCCAObject

compareCCA

Examples

Load libraries
library(scran)
library(scater)

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_datal, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- getTopHVGs(query_data_subset, n = 500)

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

Run PCA on datasets separately
ref_data_subset <- runPCA(ref_data_subset)
query_data_subset <- runPCA(query_data_subset)

Compare CCA

cca_comparison <- compareCCA(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5)

Visualize output of CCA comparison
plot(cca_comparison)

comparePCA Compare Principal Components Analysis (PCA) Results

comparePCA

Description

39

This function compares the principal components (PCs) obtained from separate PCA on reference
and query datasets for a single cell type using either cosine similarity or correlation.

The S3 plot method generates a heatmap to visualize the cosine similarities between principal com-
ponents from the output of the comparePCA function.

Usage

comparePCA(

reference_data,

query_data,

query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:5,

n_top_vars = 50,
metric = c("cosine”, "correlation”),
correlation_method = c("spearman”, "pearson")
)
S3 method for class 'comparePCAObject'
plot(x, ...)
Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the

query_data

reference cells.

A SingleCellExperiment object containing numeric expression matrix for the
query cells.

query_cell_type_col

The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col

pc_subset

n_top_vars

metric

The column name in the colData of reference_data that identifies the cell
types.

A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is the first five PCs.

An integer indicating the number of top loading variables to consider for each
PC. Default is 50.

The similarity metric to use. It can be either "cosine" or "correlation". Default
is "cosine".

correlation_method

The correlation method to use if metric is "correlation". It can be "spearman" or
"pearson". Default is "spearman”.

A numeric matrix output from the comparePCA function, representing cosine
similarities between query and reference principal components.

Additional arguments passed to the plotting function.

40 comparePCA

Details

This function compares the PCA results between the reference and query datasets by computing
cosine similarities or correlations between the loadings of top variables for each pair of principal
components. It first extracts the PCA rotation matrices from both datasets and identifies the top
variables with highest loadings for each PC. Then, it computes the cosine similarities or correla-
tions between the loadings of top variables for each pair of PCs. The resulting matrix contains the
similarity values, where rows represent reference PCs and columns represent query PCs.

The S3 plot method converts the input matrix into a long-format data frame suitable for plotting
with ggplot2. The rows in the heatmap are ordered in reverse to match the conventional display
format. The heatmap uses a blue-white-red color gradient to represent cosine similarity values,
where blue indicates negative similarity, white indicates zero similarity, and red indicates positive
similarity.

Value

A similarity matrix comparing the principal components of the reference and query datasets. Each
element (i, j) in the matrix represents the similarity between the i-th principal component of the
reference dataset and the j-th principal component of the query dataset.

The S3 plot method returns a ggplot object representing the heatmap of cosine similarities.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

See Also

plot.comparePCAObject

comparePCA

Examples

Load libraries
library(scran)
library(scater)

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_datal, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- getTopHVGs(query_data_subset, n = 500)

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)

comparePCASubspace 41

ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

Run PCA on datasets separately
ref_data_subset <- runPCA(ref_data_subset)
query_data_subset <- runPCA(query_data_subset)

Call the PCA comparison function

similarity_mat <- comparePCA(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
n_top_vars = 50,

metric = c(”cosine”, "correlation")[1],
correlation_method = c("spearman”, "pearson”)[1])
Create the heatmap
plot(similarity_mat)
comparePCASubspace Compare Subspaces Spanned by Top Principal Components

Description

This function compares the subspace spanned by the top principal components (PCs) in a reference
dataset to that in a query dataset. It computes the cosine similarity between the loadings of the top
variables for each PC in both datasets and provides a weighted cosine similarity score.

The S3 plot method generates a visualization of the output from the comparePCASubspace function.
The plot shows the cosine of principal angles between reference and query principal components,
with point sizes representing the variance explained.

Usage

comparePCASubspace(
reference_data,
query_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:5,
n_top_vars = 50

S3 method for class 'comparePCASubspaceObject'’
plot(x, ...)

42

comparePCASubspace

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.

pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is the first five PCs.

n_top_vars An integer indicating the number of top loading variables to consider for each
PC. Default is 50.

X A numeric matrix output from the comparePCASubspace function, representing

cosine similarities between query and reference principal components.

Additional arguments passed to the plotting function.

Details

This function compares the subspace spanned by the top principal components (PCs) in a reference
dataset to that in a query dataset. It first computes the cosine similarity between the loadings of the
top variables for each PC in both datasets. The top cosine similarity scores are then selected, and
their corresponding PC indices are stored. Additionally, the function calculates the average percent-
age of variance explained by the selected top PCs. Finally, it computes a weighted cosine similarity
score based on the top cosine similarities and the average percentage of variance explained.

The S3 plot method converts the input list into a data frame suitable for plotting with ggplot2.
Each point in the scatter plot represents the cosine of a principal angle, with the size of the point
indicating the average variance explained by the corresponding principal components.

Value

A list containing the following components:

principal_angles_cosines

A numeric vector of cosine values of principal angles.
average_variance_explained

A numeric vector of average variance explained by each PC.
weighted_cosine_similarity

A numeric value representing the weighted cosine similarity.

The S3 plot method returns a ggplot object representing the heatmap of cosine similarities.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

conditionalMeans

See Also

plot.comparePCASubspaceObject

comparePCASubspace

Examples

Load libraries
library(scran)
library(scater)

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_datal, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- getTopHVGs(query_data_subset, n = 500)

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

Run PCA on datasets separately
ref_data_subset <- runPCA(ref_data_subset)
query_data_subset <- runPCA(query_data_subset)

Compare PCA subspaces

subspace_comparison <- comparePCASubspace(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
n_top_vars = 50,
pc_subset = 1:5)

Plot output for PCA subspace comparison
plot(subspace_comparison)

conditionalMeans Compute Conditional Means for Cell Types

44 conditionalMeans

Description

This function computes conditional means for each cell type in the reference data. It can compute
either a single conditional mean per cell type or multiple conditional means, depending on the
specified settings. Principal component analysis (PCA) is used for dimensionality reduction before
clustering when computing multiple conditional means.

Usage

conditionalMeans(
reference_data,
ref_cell_type_col,

cell_types,
multiple_cond_means = FALSE,
assay_name = "logcounts”,

cumulative_variance_threshold = 0.7,
n_neighbor = 1

)

Arguments

reference_data A SingleCellExperiment object containing the reference data, where rows
represent genes and columns represent cells.

ref_cell_type_col
A character string specifying the column in colData(reference_data) that
contains the cell type labels.

cell_types A character vector of cell types for which to compute conditional means.

multiple_cond_means
A logical value indicating whether to compute multiple conditional means per
cell type. Defaults to FALSE.

assay_name A character string specifying the name of the assay to use for the computation.
Defaults to "logcounts”.

cumulative_variance_threshold
A numeric value between 0 and 1 specifying the variance threshold for PCA
when computing multiple conditional means. Defaults to 0. 7.

n_neighbor An integer specifying the number of nearest neighbors for clustering when com-
puting multiple conditional means. Defaults to 1.

Details

The function offers two modes of operation: - **Single conditional mean per cell type**: For each
cell type, it computes the mean expression across all observations. - **Multiple conditional means
per cell type**: For each cell type, the function performs PCA to reduce dimensionality, followed
by clustering to compute multiple conditional means.

detectAnomaly 45

Value

A numeric matrix with the conditional means for each cell type. If multiple_cond_means = TRUE,
the matrix will contain multiple rows for each cell type, representing the different conditional means
computed via clustering.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

detectAnomaly PCA Anomaly Scores via Isolation Forests with Visualization

Description

This function detects anomalies in single-cell data by projecting the data onto a PCA space and
using an isolation forest algorithm to identify anomalies.

The S3 plot method generates faceted scatter plots for specified principal component (PC) com-
binations within an anomaly detection object. It allows visualization of the relationship between
specified PCs and highlights anomalies detected by the Isolation Forest algorithm.

Usage

detectAnomaly(
reference_data,
query_data = NULL,
ref_cell_type_col,
query_cell_type_col = NULL,
cell_types = NULL,
pc_subset = 1:5,

n_tree = 500,

anomaly_treshold = 0.6,

assay_name = "logcounts”,
)
S3 method for class 'detectAnomalyObject'
plot(

X,

cell_type = NULL,

pc_subset = NULL,

data_type = c("query”, "reference"),

46

detectAnomaly

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data An optional SingleCellExperiment object containing numeric expression ma-
trix for the query cells. If NULL, then the isolation forest anomaly scores are
computed for the reference data. Default is NULL.

ref_cell_type_col
A character string specifying the column name in the reference dataset contain-
ing cell type annotations.

query_cell_type_col

A character string specifying the column name in the query dataset containing
cell type annotations.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying the indices of the PCs to be included in the plots.
If NULL, all PCs in reference_mat_subset will be included.

n_tree An integer specifying the number of trees for the isolation forest. Default is 500

anomaly_treshold

A numeric value specifying the threshold for identifying anomalies, Default is
0.6.

assay_name Name of the assay on which to perform computations. Default is "logcounts".
Additional arguments.

X A list object containing the anomaly detection results from the detectAnomaly
function. Each element of the list should correspond to a cell type and contain
reference_mat_subset, query_mat_subset, var_explained, and anomaly.

cell_type A character string specifying the cell type for which the plots should be gener-
ated. This should be a name present in x. If NULL, the "Combined" cell type
will be plotted. Default is NULL.

data_type A character string specifying whether to plot the "query" data or the "reference"
data. Default is "query".

Details

This function projects the query data onto the PCA space of the reference data. An isolation forest
is then built on the reference data to identify anomalies in the query data based on their PCA
projections. If no query dataset is provided by the user, the anomaly scores are computed on the
reference data itself. Anomaly scores for the data with all combined cell types are also provided as
part of the output.

The S3 plot method extracts the specified PCs from the given anomaly detection object and gen-
erates scatter plots for each pair of PCs. It uses ggplot2 to create a faceted plot where each facet
represents a pair of PCs. Anomalies are highlighted in red, while normal points are shown in black.

detectAnomaly

Value

A list containing the following components for each cell type and the combined data:

anomaly_scores Anomaly scores for each cell in the query data.

anomaly Logical vector indicating whether each cell is classified as an anomaly.

reference_mat_subset

PCA projections of the reference data.

query_mat_subset

PCA projections of the query data (if provided).

var_explained Proportion of variance explained by the retained principal components.

47

The S3 plot method returns a ggplot object representing the PCA plots with anomalies highlighted.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

e Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining (pp. 413-422). IEEE.

e isotree: Isolation-Based Outlier Detection

See Also

plot.detectAnomalyObject
detectAnomaly

Examples

Load data
data("reference_data")
data("query_data")

Store PCA anomaly data

anomaly_output <- detectAnomaly(reference_data = reference_data,

query_data = query_data,

ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,
pc_subset = 1:5,

n_tree = 500,

anomaly_treshold = 0.6)

Plot the output for a cell type
plot(anomaly_output,

cell_type = "CD4",

pc_subset = 1:5,

data_type = "query")

https://cran.r-project.org/web/packages/isotree/isotree.pdf

48 histQCvsAnnotation

generateColors Generate Paired Colors for Cell Types

Description

This function assigns paired colors (light and dark) to a list of cell type names. The colors are
selected from various color palettes in the ‘pals‘ package.

Usage

generateColors(cell_type_names, paired = FALSE)

Arguments

cell_type_names
A character vector of cell type names that need to be assigned colors.

paired If TRUE, the colored returned should be paired. Default is FALSE.

Details

The function uses color palettes from the ‘pals‘ package to generate colors or pairs of colors (light
and dark) for each cell type name provided. It cycles through different color families (blues, greens,
reds, oranges, purples, purd and greys) to create the colors

Value
A named character vector where the names are the original cell type names, and the values are the
assigned colors.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

histQCvsAnnotation Histograms: QC Stats and Annotation Scores Visualization

Description

This function generates histograms for visualizing the distribution of quality control (QC) statistics
and annotation scores associated with cell types in single-cell genomic data.

histQCvsAnnotation

Usage

49

histQCvsAnnotation(

se_object,

cell_type_col,

cell_types
qc_col,
score_col

Arguments

se_object

cell_type_col

cell_types

gc_col

score_col

Details

NULL,

A SingleCellExperiment containing the single-cell expression data and meta-
data.

The column name in the colData of se_object that contains the cell type la-
bels.

A vector of cell types to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL, which
will include all the cells.

A column name in the colData of se_object that contains the QC stats of
interest.

The column name in the colData of se_object that contains the cell type
scores.

The particularly useful in the analysis of data from single-cell experiments, where understanding
the distribution of these metrics is crucial for quality assessment and interpretation of cell type

annotations.

Value

A object containing two histograms displayed side by side. The first histogram represents the
distribution of QC stats, and the second histogram represents the distribution of annotation scores.

Examples

data("query_data")

Generate histograms
histQCvsAnnotation(se_object = query_data,

cell_type_col = "SingleR_annotation”,
cell_types = c("CD4", "CD8"),

gc_col = "percent_mito"”,

score_col = "annotation_scores"”)

histQCvsAnnotation(se_object = query_data,

cell_type_col = "SingleR_annotation”,
cell_types = NULL,

gc_col = "percent_mito”,

score_col = "annotation_scores”)

50 inverse_normal_trans

hotellingT?2 Calculate Hotelling’s T2 Statistic

Description

Calculates the Hotelling’s T”2 statistic for comparing means of multivariate data.

Usage

hotellingT2(samplel, sample2)

Arguments
samplel A numeric matrix or data frame of multivariate observations for sample 1, where
rows are observations and columns are variables.
sample?2 A numeric matrix or data frame of multivariate observations for sample 2, with
the same structure as sample 1.
Value

The Hotelling’s T2 statistic.

inverse_normal_trans [Inverse Normal Transformation

Description

This function performs an inverse normal transformation on a matrix or vector.

Usage

inverse_normal_trans(X, constant = 3/8)

Arguments

X A numeric matrix or vector.

constant A numeric value used in the transformation. Default is 3 / 8.
Details

The function ranks the elements of X and then applies the inverse normal transformation using the
formula gnorm((rank — constant)/(n — 2 x constant + 1)).

ledoitWolf 51

Value

A matrix or vector with the same dimensions as X, with values transformed using the inverse normal
transformation.

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard.edu>

ledoitWolf Ledoit-Wolf Covariance Matrix Estimation

Description

Estimate the covariance matrix using the Ledoit-Wolf shrinkage method.

Usage

ledoitWolf(class_data)

Arguments
class_data A numeric matrix or data frame containing the data for covariance estimation,
where rows represent observations and columns represent variables.
Details

This function computes the Ledoit-Wolf shrinkage covariance matrix estimator, which improves the
accuracy of the sample covariance matrix by shrinking it towards a structured estimator, typically
the diagonal matrix with the mean of variances as its diagonal elements.

Value

A numeric matrix representing the Ledoit-Wolf estimated covariance matrix.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

52 plot.calculateWassersteinDistanceObject

n_elements Number of Elements

Description

This function returns the number of elements in a matrix or vector.

Usage

n_elements(X)

Arguments

X A matrix or vector.

Details

If X is a matrix, the function returns the product of its dimensions. If X is a vector, the function
returns its length.

Value

An integer representing the number of elements in X.

Author(s)

Andrew Ghazi, <andrew_ghazi@hms.harvard.edu>

plot.calculateWassersteinDistanceObject
Plot Density of Wasserstein Distances for Null Distribution

Description

This function generates a density plot of Wasserstein distances for the null distribution of a ‘calcu-
lateWassersteinDistanceObject‘. Additionally, it overlays lines representing the significance thresh-
old and the reference-query distance.

Usage

S3 method for class 'calculateWassersteinDistanceObject'
plot(x, alpha = 0.05, ...)

plot.calculate WassersteinDistanceObject 53

Arguments
X A list object containing the Wasserstein distance results from the calculateWassersteinDistance
function.
alpha A numeric value specifying the significance level for thresholding. Default is
0.05.
Additional arguments for future extensions.
Details

The density plot visualizes the distribution of Wasserstein distances calculated among reference
samples, representing the null distribution. A vertical line marks the significance threshold based
on the specified alpha. Another line indicates the mean Wasserstein distance between the reference
and query datasets.

Value

A ggplot2 object representing the ridge plots of Wasserstein distances with annotated p-value.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Schuhmacher, D., Bernhard, S., & Book, M. (2019). "A Review of Approximate Transport in
Machine Learning". In *Journal of Machine Learning Research* (Vol. 20, No. 117, pp. 1-61).

See Also

calculateWassersteinDistance

Examples

Load data
data("reference_data")
data("query_data")

Extract CD4 cells
ref_data_subset <- reference_datal, which(reference_data$expert_annotation == "CD4")]
query_data_subset <- query_datal, which(query_data$expert_annotation == "CD4")]

Selecting highly variable genes (can be customized by the user)
ref_top_genes <- scran::getTopHVGs(ref_data_subset, n = 500)
query_top_genes <- scran::getTopHVGs(query_data_subset, n = 500)

Intersect the gene symbols to obtain common genes
common_genes <- intersect(ref_top_genes, query_top_genes)
ref_data_subset <- ref_data_subset[common_genes,]
query_data_subset <- query_data_subset[common_genes,]

54 plot.regressPCObject

Run PCA on reference data
ref_data_subset <- scater::runPCA(ref_data_subset)

Compute Wasserstein null distribution using reference data and observed distances with query data
wasserstein_data <- calculateWassersteinDistance(query_data = query_data_subset,
reference_data = ref_data_subset,
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:5,
n_resamples = 100)
plot(wasserstein_data)

plot.regressPCObject Plot Regression Results on Principal Components

Description
The S3 plot method generates plots to visualize the results of regression analyses performed on
principal components (PCs) against cell types or dataset origin (query vs. reference).

This function performs linear regression of a covariate of interest onto one or more principal com-
ponents, based on the data in a SingleCellExperiment object.

Usage
S3 method for class 'regressPCObject'’
plot(x, plot_type = c("r_squared”, "p-value"), alpha = 0.05, ...)
regressPC(

reference_data,

query_data = NULL,

ref_cell_type_col,

query_cell_type_col = NULL,

cell_types = NULL,

pc_subset = 1:10,

adjust_method = c("BH", "holm”, "hochberg", "hommel”, "bonferroni”, "BY", "fdr",

n none n) ,
assay_name = "logcounts"”
)
Arguments
X An object of class regressPC containing the output of the regressPC function
plot_type Type of plot to generate. Options are "r_squared" and "p-value". Default is
"r-squared".
alpha Significance threshold p-values of coefficients. Default is 0.05.

Additional arguments to be passed to the plotting functions.

plot.regressPCObject 55

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells. If NULL, the PC scores are regressed against the cell types of the
reference data.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.

query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.

pc_subset A numeric vector specifying which principal components to include in the plot.
Default is PC1 to PCS5.

adjust_method A character string specifying the method to adjust the p-values. Options include
"BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr", or "none".
Default is "BH" (Benjamini-Hochberg). Default is "BH".

assay_name Name of the assay on which to perform computations. Default is "logcounts".

Details

The S3 plot method generates, depending on the specified plot type, either the R-squared values
or p-values resulting from the regression of principal components onto cell types or dataset origin
(query vs. reference). For cell type regression, the plots show how well each PC correlates with
different cell types. For dataset regression, the plots compare the PCs between query and reference
datasets.

Principal component regression, derived from PCA, can be used to quantify the variance explained
by a covariate of interest. Applications for single-cell analysis include quantification of batch ef-
fects, assessing clustering homogeneity, and evaluating alignment of query and reference datasets
in cell type annotation settings.

Briefly, the R? is calculated from a linear regression of the covariate B of interest onto each prin-
cipal component. The variance contribution of the covariate effect per principal component is then
calculated as the product of the variance explained by the i-th principal component (PC) and the
corresponding R?(PC;|B). The sum across all variance contributions by the covariate effects in all
principal components gives the total variance explained by the covariate as follows:

G
Var(C|B) = Var(C|PC;) x R*(PCy|B)

i=1
where, Var(C' | PC;) is the variance of the data matrix C' explained by the i-th principal component.
See references for details.
Value

The S3 plot method returns a ggplot object representing the specified plot type.

A list containing

56

plot.regressPCObject

» summaries of the linear regression models for each specified principal component,

* the corresponding R-squared (R2) values,
* the variance contributions for each principal component, and

* the total variance explained.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

Luecken et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods,

19:41-50, 2022.

See Also

regressPC

plot.regressPCObject

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data (no query data)
regress_res <- regressPC(reference_data = reference_data,
ref_cell_type_col = "expert_annotation”,

cell_types = c("CD4", "CD8", "B_and_plasma”

pc_subset = 1:15)
Plot results
plot(regress_res, plot_type = "r_squared"”)
plot(regress_res, plot_type = "p-value")

Plot the PC data (with query data)

regress_res <- regressPC(reference_data = reference_data,
query_data = query_data,
ref_cell_type_col = "expert_annotation”,
query_cell_type_col = "SingleR_annotation”,

cell_types = c("CD4", "CD8", "B_and_plasma”

pc_subset = 1:15)
Plot results
plot(regress_res, plot_type = "r_squared”)
plot(regress_res, plot_type = "p-value")

, "Myeloid"),

, "Myeloid"),

plotCellTypeMDS 57

plotCellTypeMDS Plot Reference and Query Cell Types using MDS

Description

This function facilitates the assessment of similarity between reference and query datasets through
Multidimensional Scaling (MDS) scatter plots. It allows the visualization of cell types, color-coded
with user-defined custom colors, based on a dissimilarity matrix computed from a user-selected
gene set.

Usage

plotCellTypeMDS(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,

assay_name = "logcounts”
)
Arguments
qguery_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and
metadata.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
cell_types A character vector specifying the cell types to include in the plot. If NULL, all
cell types are included.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

To evaluate dataset similarity, the function selects specific subsets of cells from both reference
and query datasets. It then calculates Spearman correlations between gene expression profiles,
deriving a dissimilarity matrix. This matrix undergoes Classical Multidimensional Scaling (MDS)
for visualization, presenting cell types in a scatter plot, distinguished by colors defined by the user.

Value

A ggplot object representing the MDS scatter plot with cell type coloring.

58 plotCellTypePCA

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

References

* Kruskal, J. B. (1964). "Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis". *Psychometrika*, 29(1), 1-27. doi:10.1007/BF02289565.

* Borg, L., & Groenen, P. J. F. (2005). *Modern multidimensional scaling: Theory and applica-

tions* (2nd ed.). Springer Science & Business Media. doi:10.1007/978-0-387-25975-1.

Examples

Load data
data("reference_data")
data("query_data")

Generate the MDS scatter plot with cell type coloring
mds_plot <- plotCellTypeMDS(query_data = query_data,
reference_data = reference_data,

cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid")[1:4],

query_cell_type_col = "SingleR_annotation”,

ref_cell_type_col = "expert_annotation”)
mds_plot
plotCellTypePCA Plot Principal Components for Different Cell Types
Description

This function plots the principal components for different cell types in the query and reference

datasets.

Usage

plotCellTypePCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
pc_subset = 1:5,
assay_name = "logcounts”

plotCellTypePCA

Arguments

query_data
query cells.

59

A SingleCellExperiment object containing numeric expression matrix for the

reference_data A SingleCellExperiment object containing numeric expression matrix for the

reference cells.
query_cell_type_col

The column name in the colData of query_data that identifies the cell types.

ref_cell_type_col

The column name in the colData of reference_data that identifies the cell

types.
cell_types
cell types are included.
pc_subset
Default is 1:5.
assay_name
Details

A character vector specifying the cell types to include in the plot. If NULL, all

A numeric vector specifying which principal components to include in the plot.

Name of the assay on which to perform computations. Default is "logcounts".

This function projects the query dataset onto the principal component space of the reference dataset
and then plots the specified principal components for the specified cell types. It uses the ‘project-
PCA* function to perform the projection and ggplot?2 to create the plots.

Value

A ggplot object representing the boxplots of specified principal components for the given cell types

and datasets.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Plot the PC data
pc_plot <- plotCellTypePCA(query_data

= query_data,

reference_data = reference_data,

cell_types = c("CD4", "CD8", "B_and_plasma”, "Myeloid"),
query_cell_type_col = "expert_annotation”,
ref_cell_type_col = "expert_annotation”,

pc_subset = 1:5)

pc_plot

60 plotGeneExpressionDimred

plotGeneExpressionDimred
Visualize gene expression on a dimensional reduction plot

Description

This function plots gene expression on a dimensional reduction plot using methods like t-SNE,
UMAP, or PCA. Each single cell is color-coded based on the expression of a specific gene or
feature.

Usage

plotGeneExpressionDimred(
se_object,
method = c("TSNE", "UMAP”, "PCA"),
pc_subset = 1:5,

feature,
assay_name = "logcounts”
)
Arguments
se_object An object of class SingleCellExperiment containing log-transformed expres-
sion matrix and other metadata. It can be either a reference or query dataset.
method The reduction method to use for visualization. It should be one of the supported
methods: "TSNE", "UMAP", or "PCA".
pc_subset An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.
feature A character string representing the name of the gene or feature to be visualized.
assay_name Name of the assay on which to perform computations. Default is "logcounts”.
Value

A ggplot object representing the dimensional reduction plot with gene expression.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("query_data")

Plot gene expression on PCA plot
plotGeneExpressionDimred(se_object = query_data,
method = "PCA",

plotGeneSetScores 61

pc_subset = 1:5,
feature = "VPREB3")

plotGeneSetScores Visualization of gene sets or pathway scores on dimensional reduction
plot

Description

Plot gene sets or pathway scores on PCA, TSNE, or UMAP. Single cells are color-coded by scores
of gene sets or pathways.

Usage
plotGeneSetScores(
se_object,
method = c("PCA”, "TSNE”, "UMAP"),
score_col,
pc_subset = 1:5
)
Arguments
se_object An object of class SingleCellExperiment containing numeric expression ma-
trix and other metadata. It can be either a reference or query dataset.
method A character string indicating the method for visualization ("PCA", "TSNE", or
"UMAP").
score_col A character string representing the name of the score_col (score) in the col-
Data(se_object) to plot.
pc_subset An optional vector specifying the principal components (PCs) to include in the
plot if method = "PCA". Default is 1:5.
Details

This function plots gene set scores on reduced dimensions such as PCA, t-SNE, or UMAP. It ex-
tracts the reduced dimensions from the provided SingleCellExperiment object. Gene set scores are
visualized as a scatter plot with colors indicating the scores. For PCA, the function automatically
includes the percentage of variance explained in the plot’s legend.

Value

A ggplot2 object representing the gene set scores plotted on the specified reduced dimensions.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

62 plotMarkerExpression

Examples

Load data
data("query_data")

Plot gene set scores on PCA
plotGeneSetScores(se_object = query_data,
method = "PCA",
score_col = "gene_set_scores”,
pc_subset = 1:5)

Note: Users can provide their own gene set scores in the colData of the 'se_object' object,
using any dimension reduction of their choice.

plotMarkerExpression Plot gene expression distribution from overall and cell type-specific
perspective

Description

This function generates density plots to visualize the distribution of gene expression values for a
specific gene across the overall dataset and within a specified cell type.

Usage

plotMarkerExpression(
reference_data,
query_data,
ref_cell_type_col,
query_cell_type_col,
cell_type,
gene_name,
assay_name = "logcounts”

Arguments

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

ref_cell_type_col
The column name in the colData of reference_data that identifies the cell

types.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.

cell_type A vector of cell type cell_types to plot (e.g., c("T-cell", "B-cell")).

plotPairwiseDistancesDensity 63

gene_name The gene name for which the distribution is to be visualized.
assay_name Name of the assay on which to perform computations. Default is "logcounts".
Details

This function generates density plots to compare the distribution of a specific marker gene between
reference and query datasets. The aim is to inspect the alignment of gene expression levels as a
surrogate for dataset similarity. Similar distributions suggest a good alignment, while differences
may indicate discrepancies or incompatibilities between the datasets. To make the gene expression
scales comparable between the datasets, the gene expression values are transformed using z-rank
normalization. This transformation ranks the expression values and then scales the ranks to have a
mean of 0 and a standard deviation of 1, which helps in standardizing the distributions for compar-
ison.

Value

A gtable object containing two arranged density plots as grobs. The first plot shows the overall gene
expression distribution, and the second plot displays the cell type-specific expression distribution.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Note: Users can use SingleR or any other method to obtain the cell type annotations.
plotMarkerExpression(reference_data = reference_data,

query_data = query_data,

ref_cell_type_col = "expert_annotation”,

query_cell_type_col = "SingleR_annotation”,

gene_name = "VPREB3",

cell_type = "B_and_plasma”)

plotPairwiseDistancesDensity
Ridgeline Plot of Pairwise Distance Analysis

Description

This function calculates pairwise distances or correlations between query and reference cells of a
specified cell type and visualizes the results using ridgeline plots, displaying the density distribution
for each comparison.

64 plotPairwiseDistancesDensity

Usage

plotPairwiseDistancesDensity(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_type_query,
cell_type_ref,
pc_subset = 1:5,

distance_metric = c("correlation”, "euclidean"),
correlation_method = c("spearman”, "pearson"),
assay_name = "logcounts”
)
Arguments
query_data A SingleCellExperiment containing the single-cell expression data and meta-
data.

reference_data A SingleCellExperiment object containing the single-cell expression data and
metadata.
query_cell_type_col
The column name in the colData of query_data that identifies the cell types.
ref_cell_type_col
The column name in the colData of reference_data that identifies the cell
types.
cell_type_query
The query cell type for which distances or correlations are calculated.

cell_type_ref The reference cell type for which distances or correlations are calculated.

pc_subset A numeric vector specifying which principal components to use in the analysis.
Default is 1:5. If set to NULL, the assay data is used directly for computations
without dimensionality reduction.

distance_metric
The distance metric to use for calculating pairwise distances, such as euclidean,
manhattan, etc. Set to "correlation"” to calculate correlation coefficients.

correlation_method
The correlation method to use when distance_metric is "correlation". Possi-
ble values are "pearson" and "spearman".

assay_name Name of the assay on which to perform computations. Default is "logcounts".

Details

Designed for SingleCellExperiment objects, this function subsets data for specified cell types,
computes pairwise distances or correlations, and visualizes these measurements through ridgeline
plots. The plots help evaluate the consistency and differentiation of annotated cell types within
single-cell datasets.

plotQCvsAnnotation 65

Value

A ggplot2 object showing ridgeline plots of calculated distances or correlations.

See Also

calculateWassersteinDistance

Examples

Load data
data("reference_data")
data("query_data")

Example usage of the function

plotPairwiseDistancesDensity(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
cell_type_query = "CD8",
cell_type_ref = "CD8",
pc_subset = 1:5,
distance_metric = "euclidean”,
correlation_method = "pearson”)

plotQCvsAnnotation Scatter plot: QC stats vs Cell Type Annotation Scores

Description

Creates a scatter plot to visualize the relationship between QC stats (e.g., library size) and cell type
annotation scores for one or more cell types.

Usage

plotQCvsAnnotation(
se_object,
cell_type_col,
cell_types = NULL,
qc_col,
score_col

Arguments

se_object A SingleCellExperiment containing the single-cell expression data and meta-
data.

66 projectPCA

cell_type_col The column name in the colData of se_object that contains the cell type la-

bels.

cell_types A vector of cell type labels to plot (e.g., c("T-cell", "B-cell")). Defaults to NULL,
which will include all the cells.

gc_col A column name in the colData of se_object that contains the QC stats of
interest.

score_col The column name in the colData of se_object that contains the cell type an-

notation scores.

Details

This function generates a scatter plot to explore the relationship between various quality control
(QC) statistics, such as library size and mitochondrial percentage, and cell type annotation scores.
By examining these relationships, users can assess whether specific QC metrics, systematically
influence the confidence in cell type annotations, which is essential for ensuring reliable cell type
annotation.

Value

A ggplot object displaying a scatter plot of QC stats vs annotation scores, where each point repre-
sents a cell, color-coded by its cell type.

Examples

Load data
data("qc_data")

p1 <- plotQCvsAnnotation(se_object = qc_data,
cell_type_col = "SingleR_annotation”,
cell_types = NULL,
gc_col = "total”,
score_col = "annotation_scores”)
p1 + ggplot2::xlab("Library Size")

projectPCA Project Query Data Onto PCA Space of Reference Data

Description

This function projects a query singleCellExperiment object onto the PCA space of a reference sin-
gleCellExperiment object. The PCA analysis on the reference data is assumed to be pre-computed
and stored within the object.

projectPCA 67

Usage

projectPCA(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
pc_subset = 1:10,

assay_name = "logcounts"”
)
Arguments
query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
character. The column name in the colData of query_data that identifies the
cell types.

ref_cell_type_col
character. The column name in the colData of reference_data that identifies

the cell types.
pc_subset A numeric vector specifying the subset of principal components (PCs) to com-
pare. Default is 1:10.
assay_name Name of the assay on which to perform computations. Defaults to "logcounts”.
Details

This function assumes that the "PCA" element exists within the reducedDims of the reference data
(obtained using reducedDim(reference_data)) and that the genes used for PCA are present in
both the reference and query data. It performs centering and scaling of the query data based on the
reference data before projection.

Value

A data. frame containing the projected data in rows (reference and query data combined).

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Project the query data onto PCA space of reference

68 projectSIR

pca_output <- projectPCA(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”,
pc_subset = 1:10)

projectSIR Project Query Data Onto SIR Space of Reference Data

Description

This function projects a query SingleCellExperiment object onto the SIR (supervised indepen-
dent component) space of a reference SingleCellExperiment object. The SVD of the reference
data is computed on conditional means per cell type, and the query data is projected based on these
reference components.

Usage

projectSIR(
query_data,
reference_data,
query_cell_type_col,
ref_cell_type_col,
cell_types = NULL,
multiple_cond_means = TRUE,
assay_name = "logcounts”,
cumulative_variance_threshold = 0.7,
n_neighbor = 1

Arguments

query_data A SingleCellExperiment object containing numeric expression matrix for the
query cells.

reference_data A SingleCellExperiment object containing numeric expression matrix for the
reference cells.

query_cell_type_col
A character string specifying the column in the colData of query_data that
identifies the cell types.

ref_cell_type_col

A character string specifying the column in the colData of reference_data
that identifies the cell types.

cell_types A character vector of cell types for which to compute conditional means in the
reference data.

projectSIR 69

multiple_cond_means

A logical value indicating whether to compute multiple conditional means per
cell type (through PCA and clustering). Defaults to TRUE.

assay_name A character string specifying the assay name on which to perform computations.
Defaults to "logcounts”.

cumulative_variance_threshold
A numeric value between 0 and 1 specifying the variance threshold for PCA
when computing multiple conditional means. Defaults to 0. 7.

n_neighbor An integer specifying the number of nearest neighbors for clustering when com-
puting multiple conditional means. Defaults to 1.

Details

The genes used for the projection (SVD) must be present in both the reference and query datasets.
The function first computes conditional means for each cell type in the reference data, then performs
SVD on these conditional means to obtain the rotation matrix used for projecting both the reference
and query datasets. The query data is centered and scaled based on the reference data.

Value

A list containing:

cond_means A matrix of the conditional means computed for the reference data.

rotation_mat The rotation matrix obtained from the SVD of the conditional means.
sir_projections
A data.frame containing the SIR projections for both the reference and query
datasets.

percent_var The percentage of variance explained by each component of the SIR projection.

Author(s)

Anthony Christidis, <anthony-alexander_christidis@hms.harvard.edu>

Examples

Load data
data("reference_data")
data("query_data")

Project the query data onto SIR space of reference

sir_output <- projectSIR(query_data = query_data,
reference_data = reference_data,
query_cell_type_col = "SingleR_annotation”,
ref_cell_type_col = "expert_annotation”)

70 gc_data

qc_data Quality Control Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed query dataset from the Bunis haematopoietic stem and progen-
itor cell data. It has been preprocessed to include log-normalized counts, QC metrics, SingleR cell
type predictions, and annotation scores.

Usage

gc_data

Format

An object of class SingleCellExperiment with 500 rows and 750 columns.

Details

This dataset underwent the following steps:

* Loads the hpca reference dataset using fetchReference from the celldex package.

* Loads the QC dataset (Bunis haematopoietic stem and progenitor cell data) from Bunis DG et
al. (2021).

* Adds QC metrics to the QC dataset using the function addPerCellQCMetrics from the scuttle
package.

* Performs log normalization on the QC dataset using the function logNormCounts from the
scuttle package.

* Runs SingleR to predict cell types and assigns predicted labels to the QC dataset using the
function SingleR from the SingleR package.

* Assigns annotation scores to the QC dataset.

* Selects specific columns (total, SingleR_annotation, annotation_scores) from the cell
metadata for downstream analysis.

* Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the QC dataset.
Source
Bunis DG et al. (2021). Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human
Naive T Cells Cell Rep. 34(1): 108573
References

Bunis DG et al. (2021). Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human
Naive T Cells Cell Rep. 34(1): 108573

query_data 71

See Also

Use data("qgc_data") to load and access the resulting quality control dataset.

Examples

Load and explore the quality control dataset
data("qc_data")

query_data Query Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed query dataset from the HeOrganAtlas dataset for Marrow tissue.
It has been preprocessed to include log-normalized counts, specific metadata columns, annotations
based on SingleR cell type scoring, and PCA, t-SNE, and UMAP results.

Usage

query_data

Format

An object of class SingleCellExperiment with 392 rows and 503 columns.

Details

This dataset underwent the following steps:

Loads the HeOrganAtlas dataset specifically for Marrow tissue from the scRNAseq package.
Divides the loaded dataset into a query dataset used for downstream analysis.

Performs log normalization on the query dataset using the function logNormCounts from the
scuttle package.

Selects specific columns (percent_mito, expert_annotation) from the cell metadata for
downstream analysis.

Adds SingleR annotations (SingleR_annotation) and annotation scores (annotation_scores)
to the query dataset using the function SingleR from the SingleR package.

Computes AUC gene set scores using the function AUCell_calcAUC from the AUCell package
and adds these scores to the query dataset.

Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the query dataset.

Intersects the highly variable genes between the query and reference datasets to obtain com-
mon genes for analysis.

72 reference_data

* Performs Principal Component Analysis (PCA) on the query dataset using the function runPCA
from the scater package.

 Performs t-Distributed Stochastic Neighbor Embedding (t-SNE) on the query dataset using
the function runTSNE from the scater package.

* Performs Uniform Manifold Approximation and Projection (UMAP) on the query dataset
using the function runUMAP from the scater package.

Source

The HeOrganAtlas dataset, available through the scRNAseq package.

References
He, et al. (2020). HeOrganAtlas: a comprehensive human organ atlas based on single-cell RNA
sequencing.

See Also

Use data("query_data") toload and access the resulting query dataset and the data("reference_data")
for comparison with the reference dataset.

Examples

Load and explore the query dataset
data("query_data")

reference_data Reference Single-Cell RNA-Seq Dataset

Description

This dataset contains the processed reference dataset from the HeOrganAtlas dataset for Marrow
tissue. It has been preprocessed to include log-normalized counts, specific metadata columns, and
PCA, t-SNE, and UMAP results.

Usage

reference_data

Format

An object of class SingleCellExperiment with 392 rows and 1500 columns.

reference_data 73

Details

This dataset underwent the following steps:

Source

Loads the HeOrganAtlas dataset specifically for Marrow tissue from the scRNAseq package.
Divides the loaded dataset into a reference dataset used for downstream analysis.

Performs log normalization on the reference dataset using the function logNormCounts from
the scuttle package.

Selects the column expert_annotation) from the cell metadata for downstream analysis.

Selects highly variable genes (HVGs) using the function getTopHVGs from the scran package
on the reference dataset.

Performs Principal Component Analysis (PCA) on the reference dataset using the function
runPCA from the scater package.

Performs t-Distributed Stochastic Neighbor Embedding (t-SNE) on the reference dataset using
the function runTSNE from the scater package.

Performs Uniform Manifold Approximation and Projection (UMAP) on the reference dataset
using the function runUMAP from the scater package.

The HeOrganAtlas dataset, available through the scRNAseq package.

References

He, et al. (2020). HeOrganAtlas: a comprehensive human organ atlas based on single-cell RNA
sequencing.

See Also

Use data("reference_data") to load and access the resulting reference dataset.

Examples

Load and explore the reference dataset
data("reference_data")

Index

* internal

adjustPValues, 6
argumentCheck, 7
calculate_entropy, 35
calculateAveragePairwiseCorrelation,
10
calculateCellDistances, 13
calculateCellSimilarityPCA, 18
calculateDiscriminantSpace, 21
calculateNearestNeighborProbabilities,
27
calculateSIRSpace, 29
compareCCA, 36
comparePCA, 38
comparePCASubspace, 41
conditionalMeans, 43
detectAnomaly, 45
generateColors, 48
hotellingT2, 50
inverse_normal_trans, 50
ledoitWolf, 51
n_elements, 52

plot.calculateWassersteinDistanceObject,

52
plot.regressPCObject, 54
gc_data, 70
query_data, 71
reference_data, 72
scDiagnostics-package, 3

calculateCategorizationEntropy, 5, 12
calculateCellDistances, 5, 13, 15
calculateCellDistancesSimilarity, 5, 16
calculateCellSimilarityPCA, 4, 18, 19
calculateCramerPValue, 4, 19
calculateDiscriminantSpace, 3, 21, 24
calculateHotellingPValue, 4, 24
calculateHVGOverlap, 4, 26
calculateNearestNeighborProbabilities,
4,27, 28, 29
calculateSIRSpace, 29, 31
calculateVarImpOverlap, 4, 32
calculateWassersteinDistance, 4, 33, 53,
65
compareCCA, 4, 36, 38
comparePCA, 4, 38, 40
comparePCASubspace, 4, 41, 43
conditionalMeans, 43

detectAnomaly, 4, 45, 47

generateColors, 48
geom_density, 28

histQCvsAnnotation, 4, 48
hotellingT2, 50

inverse_normal_trans, 50

ledoitWolf, 51

+ package

scDiagnostics-package, 3 n_elements, 52

adjustPValues, 6 plot.calculateAveragePairwiseCorrelationObject
argumentCheck, 7 12
plot.calculateAveragePairwiseCorrelationObject
(calculateAveragePairwiseCorrelation),
10
plot.calculateCellDistancesObject, 15
plot.calculateCellDistancesObject
(calculateCellDistances), 13

boxplotPCA, 3,9
calculate_entropy, 35
calculateAveragePairwiseCorrelation, 4,

10, 12

74

INDEX

plot.calculateCellSimilarityPCAObject,
19

75

scDiagnostics-package, 3
SingleCellExperiment, 7-9, 11, 14, 16, 18,

plot.calculateCellSimilarityPCAObject
(calculateCellSimilarityPCA),
18
plot.calculateDiscriminantSpaceObject,
24
plot.calculateDiscriminantSpaceObject
(calculateDiscriminantSpace),
21
plot.calculateNearestNeighborProbabilitiesObject
29
plot.calculateNearestNeighborProbabilitiesObject
(calculateNearestNeighborProbabilities),
27
plot.calculateSIRSpaceObject, 3/
plot.calculateSIRSpaceObject
(calculateSIRSpace), 29
plot.calculateWassersteinDistanceObject,
35,52
plot.compareCCAObject, 38
plot.compareCCAObject (compareCCA), 36
plot.comparePCAObject, 40
plot.comparePCAObject (comparePCA), 38
plot.comparePCASubspaceObject, 43
plot.comparePCASubspaceObject
(comparePCASubspace), 41
plot.detectAnomalyObject, 47
plot.detectAnomalyObject
(detectAnomaly), 45
plot.regressPCObject, 54, 56
plotCellTypeMDS, 3, 57
plotCellTypePCA, 3, 58
plotGeneExpressionDimred, 3, 60
plotGeneSetScores, 4, 61
plotMarkerExpression, 3, 62
plotPairwiseDistancesDensity, 4, 63
plotQCvsAnnotation, 4, 65
projectPCA, 5, 66
projectSIR, 68

gc_data, 70
query_data, 71

reference_data, 72
regressPC, 4, 56
regressPC (plot.regressPCObject), 54

scDiagnostics (scDiagnostics-package), 3

20, 22, 25, 28, 30, 32, 34, 36, 39, 42,
46,49, 54, 55, 57, 59-62, 64, 65, 67,
68

	scDiagnostics-package
	adjustPValues
	argumentCheck
	boxplotPCA
	calculateAveragePairwiseCorrelation
	calculateCategorizationEntropy
	calculateCellDistances
	calculateCellDistancesSimilarity
	calculateCellSimilarityPCA
	calculateCramerPValue
	calculateDiscriminantSpace
	calculateHotellingPValue
	calculateHVGOverlap
	calculateNearestNeighborProbabilities
	calculateSIRSpace
	calculateVarImpOverlap
	calculateWassersteinDistance
	calculate_entropy
	compareCCA
	comparePCA
	comparePCASubspace
	conditionalMeans
	detectAnomaly
	generateColors
	histQCvsAnnotation
	hotellingT2
	inverse_normal_trans
	ledoitWolf
	n_elements
	plot.calculateWassersteinDistanceObject
	plot.regressPCObject
	plotCellTypeMDS
	plotCellTypePCA
	plotGeneExpressionDimred
	plotGeneSetScores
	plotMarkerExpression
	plotPairwiseDistancesDensity
	plotQCvsAnnotation
	projectPCA
	projectSIR
	qc_data
	query_data
	reference_data
	Index

