Package ‘MutationalPatterns’

October 16, 2025
Type Package
Title Comprehensive genome-wide analysis of mutational processes

Description Mutational processes leave characteristic footprints in genomic DNA. This
package provides a comprehensive set of flexible functions that allows
researchers to easily evaluate and visualize a multitude of mutational patterns
in base substitution catalogues of e.g. healthy samples, tumour samples, or
DNA-repair deficient cells. The package covers a wide range of patterns including: mutational
signatures, transcriptional and replicative strand bias, lesion segregation,
genomic distribution and association with genomic features, which are
collectively meaningful for studying the activity of mutational processes. The
package works with single nucleotide variants (SN'Vs), insertions and deletions
(Indels), double base substitutions (DBSs) and larger multi base substitutions
(MBSs). The package provides functionalities for both extracting mutational
signatures de novo and determining the contribution of previously identified
mutational signatures on a single sample level. MutationalPatterns integrates
with common R genomic analysis workflows and allows easy association with
(publicly available) annotation data.

Version 3.18.0
Date 2024-04-05
License MIT + file LICENSE

URL https://doi.org/doi:10.1186/s12864-022-08357-3

Imports stats, S4Vectors, BiocGenerics (>= 0.18.0), BSgenome (>=
1.40.0), VariantAnnotation (>= 1.18.1), dplyr (>= 0.8.3),
tibble(>= 2.1.3), purrr (>= 0.3.2), tidyr (>= 1.0.0), stringr
(>= 1.4.0), magrittr (>= 1.5), ggplot2 (>= 2.1.0), pracma (>=
1.8.8), IRanges (>= 2.6.0), GenomelnfoDb (>= 1.12.0),
Biostrings (>= 2.40.0), ggdendro (>= 0.1-20), cowplot (>=
0.9.2), ggalluvial (>= 0.12.2), RColorBrewer, methods

Depends R (>=4.2.0), GenomicRanges (>= 1.24.0), NMF (>= 0.20.6)

Suggests BSgenome.Hsapiens.UCSC.hg19 (>= 1.4.0), BiocStyle (>=2.0.3),
TxDb.Hsapiens.UCSC.hg19.knownGene (>= 3.2.2), biomaRt (>=
2.28.0), gridExtra (>= 2.2.1), rtracklayer (>= 1.32.2), ccfindR
(>= 1.6.0), GenomicFeatures, AnnotationDbi, testthat, knitr,
rmarkdown

https://doi.org/doi:10.1186/s12864-022-08357-3

biocViews Genetics, SomaticMutation
ZipData NA

LazyData false

RoxygenNote 7.1.1

Encoding UTF-8

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/MutationalPatterns
git_branch RELEASE_3_21

git_last commit d19e340
git_last_commit_date 2025-04-15
Repository Bioconductor 3.21
Date/Publication 2025-10-15

Author Freek Manders [aut] (ORCID: <https://orcid.org/0000-0001-6197-347X>),
Francis Blokzijl [aut] (ORCID: <https://orcid.org/0000-0002-8084-8444>),
Roel Janssen [aut] (ORCID: <https://orcid.org/0000-0003-4324-5350>),
Jurrian de Kanter [ctb] (ORCID:
<https://orcid.org/0000-0001-5665-3711>),
Rurika Oka [ctb] (ORCID: <https://orcid.org/0000-0003-4107-7250>),
Mark van Roosmalen [cre],
Ruben van Boxtel [aut, cph] (ORCID:
<https://orcid.org/0000-0003-1285-2836>),
Edwin Cuppen [aut] (ORCID: <https://orcid.org/0000-0002-0400-9542>)

Maintainer Mark van Roosmalen <vanBoxtelBioinformatics@prinsesmaximacentrum.

Contents

binomial_test
bin_mutation_density
calculate_lesion_segregation
cluster_signatures L. e e e e e e e
context_potential_damage_analysis Lo
convert_sigs_to_ref L L
COS_SIM . o v v v e e e e e e
COS_SIM_MALTIX v v v o e e e e e e e e e e e e e e e
count_dbs_contexts e e e e e e
count_indel_contexts e e e e e
count_mbS_CONEEXLS v v i e e e e e e e e
determine_regional_similarity L.
enrichment_depletion_test
eXtract_SIZNAtUIES« « v v v v v e e e e e e e e e e e
fit_to_sSignatures e e e e
fit_to_signatures_bootstrapped Lo oL oL
fit_to_signatures_strict L.
genomic_distribution Lo

Contents

nl>

https://orcid.org/0000-0001-6197-347X
https://orcid.org/0000-0002-8084-8444
https://orcid.org/0000-0003-4324-5350
https://orcid.org/0000-0001-5665-3711
https://orcid.org/0000-0003-4107-7250
https://orcid.org/0000-0003-1285-2836
https://orcid.org/0000-0002-0400-9542

Contents

3
get_dbs_COntext e e e e e e e e 28
get_indel_context L e e 29
get_known_signatures e 30
GELMUL_LYPE . . . o v v e e e e e e e e 32
get_SImM_tb. e e e 33
lengthen_mut_matrix L 34
MEerge_Signatlures v v v v i e e e e e e e e e 35
MutationalPatterns L. e e e e 36
MutationalPatterns-defunct 37
mutations_from_vcl L e 38
mut_192 OCCUITENCES« « v v v e e e e e e e e e e e e e e e e 38
MUt_96_OCCUITENCES« v v v e 39
MUL_CONtEXE o o e e e e e e e e e e e e 39
MUE_MATIX . o v v o o o e e e e e e e e e e e e 40
mut_matrix_stranded L e 41
mut_strand L e e e 43
MUEL_EYPE .« o o o o e e e e e e e e e e e 45
MUE_tYPE_OCCUITENCES .+ .« « « v v v v v e 46
plot_192 profile. 47
plot_96_profile 48
plot_bootstrapped_contribution oo 49
plot_compare_dbs L e e e 50
plot_compare_indels 51
plot_compare_mbs 53
plot_compare_profiles e 54
plot_contribution e 56
plot_contribution_heatmap 58
plot_correlation_bootstrap Lo 59
plot_cosine_heatmap e 60
plot_dbs_contexts e e e e e e 62
plot_enrichment_depletion o 63
plot_indel_contexts e e e e 64
plot_lesion_segregation 66
plot_main_dbs_contexts 67
plot_main_indel_contexts 68
Plot_mbs_CONtexts e e e e e e 69
plot_original_vs_reconstructed Lo L 70
plot_profile_heatmap 71
plot_profile_region e e e 73
plot_rainfall L 74
plot_regional_similarity L 76
PIOL_TIVEr e e e e e e e e 78
plot_signature_strand_bias 79
PIOL_SPECIIUM o o e e e e e e e 80
plot_spectrum_region e e e 82
plot_strand L. e e e e 84
plot_strand_bias L e 85

pool_mut_mat e e e e e e 87

binomial_test

read_vefs_as_grangeso e e e e e e 87
region_cossim-class L. e e 89
rename_nmf_signatures L. 90
show,region_cossim-method L L L o 91
signature_potential_damage_analysis L. 92
SPlit_MULS_region e 93
strand_bias_test L e e e e e e e e 94
Strand_OCCUITENCES v v v v v o e e e e e e e e e e e e e e e 96
EYPE_CONLEXL v v v v e it e e e e e e e e e e e e e e e e e 97

Index 98

binomial_test Binomial test for enrichment or depletion testing
Description

This function performs lower-tail binomial test for depletion and upper-tail test for enrichment

Usage

binomial_test(p, n, x, p_cutoffs = 0.05)

Arguments

p Probability of success

n Number of trials

X Observed number of successes

p_cutoffs Significance cutoff for the p value. Default: 0.05
Value

A data.frame with direction of effect (enrichment/depletion), P-value and significance asterisks

Examples

binomial_test (0.5, 1200, 543)
binomial_test (0.2, 800, 150)

bin_mutation_density 5

bin_mutation_density Bin the genome based on mutation density

Description

This function splits the genome based on the mutation density. The density is calculated per chro-
mosome. The density is split into bins. The difference in density between subsequent bins is the
same for all bins. In other words, the difference in density between bins 1 and 2 is the same as
between bins 2 and 3. The function returns a GRangesList. Each GRanges in the list contains the
regions associated with that bin. This can be used with the ’split_muts_region()’ function.

Usage

bin_mutation_density(vcf_list, ref_genome, nrbins = 3, man_dens_cutoffs = NA)

Arguments
vef_list GRangesList or GRanges object.
ref_genome BSgenome reference genome object
nrbins The number of bins in which to separate the genome

man_dens_cutoffs
Manual density cutoffs to use.

Value

GRangesList

See Also

Other genomic_regions: lengthen_mut_matrix(), plot_profile_region(), plot_spectrum_region(),
split_muts_region()

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Determine region density
dens_grl <- bin_mutation_density(grl, ref_genome, nrbins = 3)
names(dens_grl) <- c("Low", "Medium”, "High")

calculate_lesion_segregation

You can also use manual cutoffs. This feature is meant for more
advanced users. It can be usefull if you want to find highly mutated regions, with

a consistent cutoff between analyses.

dens_grl_man <- bin_mutation_density(grl, ref_genome, man_dens_cutoffs = c(0@, 2e-08, 1))

calculate_lesion_segregation

Calculate the amount of lesion segregation for a GRangesList or

GRanges object.

Description

This function calculates lesion segregation for a GRangesList or GRanges object. Lesion segrega-
tion is a large scale Watson versus Crick strand asymmetry caused by many DNA lesions occurring
during a single cell cycle. It was first described in Aitken et al., 2020, Nature. See their paper for
a more in-depth discussion of this phenomenon. This function can perform three different types
of test to calculate lesion segregation. The first method is unique to this package, while the other
two were also used by Aitken et al., 2020. The ’binomial’ test is based on how often consecutive
mutations are on different strands. The ’wald-wolfowitz’ test checks if the strands are randomly
distributed. It’s not known which method is superior. The ’r120’ test looks at run sizes (The number
of consecutive mutations on the same strand). This is less susceptible to local strand asymetries and

kataegis, but doesn’t generate a p-value.

Usage

calculate_lesion_segregation(
vef_list,
sample_names,

test = c("binomial”, "wald-wolfowitz”, "rl20"),

split_by_type = FALSE,
ref_genome = NA,
chromosomes = NA

Arguments

vef_list GRangesList or GRanges object

sample_names The name of the sample

test The statistical test that should be used. Possible values: * ’binomial’ Bino-
mial test based on the number of strand switches. (Default); * *wald-wolfowitz’
Statistical test that checks if the strands are randomly distributed.; * 'r120” Cal-
culates 1120 value and the genomic span of the associated runs set.;

split_by_type Boolean describing whether the lesion segregation should be calculated for all
SNVs together or per 96 substitution context. (Default: FALSE)

ref_genome BSgenome reference genome object. Only needed when split_by_type is TRUE

with the binomial test or when using the 1120 test.

chromosomes The chromosomes that are used. Only needed when using the r120 test.

calculate_lesion_segregation 7

Details

The amount of lesion segregation is calculated per GRanges object. The results are then combined
in a table.

It’s possible to calculate the lesion segregation separately per 96 substitution context, when using
the binomial test. The results are then automatically added back up together. This can increase
sensitivity when a mutational process causes multiple types of base substitutions, which aren’t
considered to be on the same strand.

When using the rl20 test, this function first calculates the strand runs per chromosome and combines
them. It then calculates the smallest set of runs, which together encompass at least 20 percent of
the mutations. (This set thus contains the largest runs). The size of the smallest run in this set is the
r120. The genomic span of the runs in this set is also calculated.

Value

A tibble containing the amount of lesions segregation per sample

See Also

plot_lesion_segregation

Other Lesion_segregation: plot_lesion_segregation()

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

To reduce the runtime we take only the first two samples
grl <- grl[1:2]

Set the sample names

sample_names <- c("colonl1”, "colon2")

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Calculate lesion segregation
lesion_segretation <- calculate_lesion_segregation(grl, sample_names)

Calculate lesion segregation per 96 base type

lesion_segretation_by_type <- calculate_lesion_segregation(grl, sample_names,
split_by_type = TRUE, ref_genome = ref_genome

)

Calculate lesion segregation using the wald-wolfowitz test.
lesion_segregation_wald <- calculate_lesion_segregation(grl,
sample_names,
test = "wald-wolfowitz"

8 cluster_signatures

)

Calculate lesion segregation using the rl20.
chromosomes <- paste@("chr”, c(1:22, "X"))
lesion_segregation_rl20 <- calculate_lesion_segregation(grl,
sample_names,
test = "rl20",
ref_genome = ref_genome,
chromosomes = chromosomes

cluster_signatures Signature clustering function

Description

Hierarchical clustering of signatures based on cosine similarity

Usage
cluster_signatures(signatures, method = "complete”)
Arguments
signatures Matrix with 96 trinucleotides (rows) and any number of signatures (columns)
method The agglomeration method to be used for hierarchical clustering. This should
be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA),
"mequitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
Default = "complete".
Value

hclust object

See Also

plot_contribution_heatmap

Examples

Get signatures
signatures <- get_known_signatures()

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

context_potential_damage_analysis 9

Hierarchically cluster the cancer signatures based on cosine similarity
hclust_signatures <- cluster_signatures(signatures)

Plot dendrogram
plot(hclust_signatures)

context_potential_damage_analysis
Potential damage analysis for the supplied mutational contexts

Description

The ratio of possible ’stop gain’, ’'mismatches’, ’synonymous mutations’ and ’splice site mutations’
is counted per mutational context. This is done for the supplied ENTREZ gene ids. This way it can
be determined how damaging a mutational context could be. N gives the total number of possible
mutations per context.

Usage
context_potential_damage_analysis(
contexts,
txdb,
ref_genome,
gene_ids,
verbose = FALSE
)
Arguments
contexts Vector of mutational contexts to use for the analysis.
txdb Transcription annotation database
ref_genome BSgenome reference genome object
gene_ids Entrez gene ids
verbose Boolean. Determines whether progress is printed. (Default: FALSE)
Details

The function works by first selecting the longest transcript per gene. The coding sequence (cds)
of this transcript is then assembled. Next, the function loops over the reference contexts. For each
context (and it’s reverse complement), all possible mutation locations are determined. Splice site
mutations are removed at this stage. It’s also determined whether these locations are the first, second
or third base of the cds codon (mut loc). Each unique combination of codon and mut loc is then
counted. For each combination the reference amino acid and the possible alternative amino acids are
determined. By comparing the reference and alternative amino acids, the number of ’stop_gains’,
’mismatches’ and ’synonymous mutations’ is determined. This is then normalized per mutation
context. For example, mutations with the ACA context could be located in the third position of a

10 context_potential_damage_analysis

codon like TAC. This might happen 200 times in the supplied genes. This TAC codon could then be
mutated in either a TAA, TAG or a TAT. The first two of these options would induce a stop codon,
while the third one would be synonymous. By summing up all codons the number of stop_gains’,
’mismatches’ and ’synonymous mutations’ is determined per mutation context.

For mismatches the blosum62 score is also calculated. This is a score based on the BLOSUMG62
matrix, that describes how similar two amino acids are. This score is normalized over the total
amount of possible mismatches. A lower score means that the amino acids in the mismatches are
more dissimilar. More dissimilar amino acids are more likely to have a detrimental effect.

To identify splice sites, sequences around the splice locations are used instead of the cds. The 2
bases 5° and 2 bases 3’ of a splice site are considered to be splice site mutation locations.

Value

A tibble with the ratio of ’stop gain’, 'mismatch’, ’synonymous’ and ’splice site’ mutations per
mutation context.

Examples

See the 'mut_matrix()' example for how we obtained the

mutation matrix information:

mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)
contexts <- rownames(mut_mat)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Load the transcription annotation database

You can obtain the database from the UCSC hg19 dataset using
Bioconductor:

BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")
library("TxDb.Hsapiens.UCSC.hg19.knownGene")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

Here we will use the Entrez Gene IDs from several cancer
genes. In practice you might want to use larger gene lists,
but here we only use a few to keep the runtime low.

In this example we are using:

TP53, KRAS, NRAS, BRAF, BRCA2

gene_ids <- c(7157, 3845, 4893, 673, 675)

Run the function
context_potential_damage_analysis(contexts, txdb, ref_genome, gene_ids)

The function can provide updates about its progress.

This can be usefull when it's running slowly,

which can happen when you are using many gene_ids.

To reduce the example runtime, we don't re-run the analysis, but only show the command

convert_sigs_to_ref 11

context_potential_damage_analysis(contexts, txdb, ref_genome, gene_ids, verbose = TRUE)

convert_sigs_to_ref Convert tissue specific signature exposures to reference

Description

This function converts tissue specific signature contributions into reference signature contributions.
This works on SNV signatures from SIGNAL. It uses a conversion matrix to do the conversion. The
output can include possible artifact signatures.

Usage

convert_sigs_to_ref(fit_res)

Arguments

fit_res Named list with signature contributions and reconstructed mutation matrix

Value

The input fit_res, but with converted signature contributions.

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("”states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Get tissue specific signatures
signatures <- get_known_signatures(source = "SIGNAL", sig_type = "tissue”, tissue_type = "Skin")

Fit tissue specific signatures
fit_res <- fit_to_signatures(mut_mat, signatures)

Convert the tissue specific signatures exposures to reference
fit_res <- convert_sigs_to_ref(fit_res)

12 cos_sim_matrix

cos_sim Cosine similarity function

Description

Calculate the cosine similarity between two vectors of the same length. The cosine similarity is a
value between O (distinct) and 1 (identical) and indicates how much two vectors are alike.

Usage

cos_sim(x, y)

Arguments
X Vector 1 of length n
y Vector 2 of length n
Value

Cosine similarity value; a value between 0 and 1

Examples
x <-c(1.1, 2.1, 0.2, 0.1, 2.9)
y <- c(0.9, 1.9, 0.5, 0.4, 3.1)
cos_sim(x, y)
cos_sim_matrix Compute all pairwise cosine similarities between mutational pro-
files/signatures

Description

Computes all pairwise cosine similarities between the mutational profiles provided in the two mu-
tation count matrices. The cosine similarity is a value between 0O (distinct) and 1 (identical) and
indicates how much two vectors are alike.

Usage

cos_sim_matrix(mut_matrix1, mut_matrix2)

Arguments
mut_matrixi mutation count matrix (dimensions: a mutation features X n samples)

mut_matrix2 96 mutation count matrix (dimensions: a mutation features X m samples)

count_dbs_contexts 13

Value

Matrix with pairwise cosine similarities (dimensions: n mutational profiles X m mutational profiles)

See Also

mut_matrix, fit_to_signatures, plot_cosine_heatmap

Examples

Get signatures
signatures <- get_known_signatures()

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Calculate the cosine similarity between each COSMIC signature and each 96 mutational profile
cos_sim_matrix(mut_mat, signatures)

count_dbs_contexts Count DBS contexts

Description

Count DBS contexts

Usage

count_dbs_contexts(vcf_list)

Arguments
vef_list GRanges or GRangesList object containing DBS mutations in which the context
was added with get_dbs_context.
Details

Counts the number of DBS per COSMIC context from a GRanges or GRangesList object containing
DBS variants. This function applies the count_dbs_contexts_gr function to each gr in its input. It
then combines the results in a single tibble and returns this.

Value

A tibble containing the number of DBS per COSMIC context per gr.

14 count_indel_contexts

See Also

get_dbs_context
Other DBS: get_dbs_context(), plot_compare_dbs(), plot_dbs_contexts(), plot_main_dbs_contexts()

Examples

Get a GRangesList or GRanges object with DBS contexts.

See 'dbs_get_context' for more info on how to do this.

grl_dbs_context <- readRDS(system.file("”states/blood_grl_dbs_context.rds"”,
package = "MutationalPatterns”

))

Count the DBS contexts
count_dbs_contexts(grl_dbs_context)

count_indel_contexts Count indel contexts

Description

Count indel contexts

Usage

count_indel_contexts(vcf_list)

Arguments
vef_list GRanges or GRangesList object containing indel mutations in which the context
was added with get_indel_context.
Details

Counts the number of indels per COSMIC context from a GRanges or GRangesList object contain-
ing indel mutations. This function applies the count_indel_contexts_gr function to each gr in its
input. It then combines the results in a single tibble and returns this.

Value

A tibble containing the number of indels per COSMIC context per gr.

See Also

get_indel_context

Other Indels: get_indel_context(), plot_compare_indels(), plot_indel_contexts(), plot_main_indel_contexts

count_mbs_contexts 15

Examples

Get a GRangesList or GRanges object with indel contexts.

See 'indel_get_context' for more info on how to do this.

grl_indel_context <- readRDS(system.file("states/blood_grl_indel_context.rds",
package = "MutationalPatterns”

)

Count the indel contexts
count_indel_contexts(grl_indel_context)

count_mbs_contexts Count MBS variants grouped by length.

Description

Count MBS variants grouped by length.

Usage

count_mbs_contexts(vcf_list)

Arguments

vef_list GRanges or GRangesList object containing mbs variants.

Details

Counts the number of mbs grouped by length from a GRanges or GRangesList object containing
mbs variants. This is used, since a COSMIC context has to our knowledge not yet been defined.
This function applies the count_mbs_contexts_gr function to each gr in its input. It then combines
the results in a single tibble and returns this.

Value

A tibble containing the number of MBS per MBS length per gr.

See Also

Other MBS: plot_compare_mbs(), plot_mbs_contexts()

Examples

Get a GRangesList or GRanges object with mbs variants.
mbs_grl <- readRDS(system.file("states/blood_grl_mbs.rds",
package = "MutationalPatterns”

))

Count the MBSs
count_mbs_contexts(mbs_grl)

16 determine_regional_similarity

determine_regional_similarity
Determine regional mutation pattern similarity

Description

Calculate the cosine similarities between the global mutation profile and the mutation profile of
smaller genomic windows, using a sliding window approach. Regions with a very different mutation
profile can be identified in this way. This function generally requires many mutations (~100,000) to
work properly.

Usage

determine_regional_similarity(
vcf,
ref_genome,
chromosomes,
window_size = 100,
stepsize = 25,
extension = 1,
oligo_correction = FALSE,
exclude_self_mut_mat = TRUE,
max_window_size_gen = 2e+07,
verbose = FALSE

)
Arguments
vef GRanges object
ref_genome BSgenome reference genome object
chromosomes Vector of chromosome/contig names of the reference genome to be plotted.
window_size The number of mutations in a window. (Default: 100)
stepsize The number of mutations that a window slides in each step. (Default: 25)
extension The number of bases, that’s extracted upstream and downstream of the base

substitutions, to create the mutation matrices. (Default: 1).

oligo_correction
Boolean describing whether oligonucleotide frequency correction should be ap-
plied. (Default: FALSE)

exclude_self_mut_mat
Boolean describing whether the mutations in a window should be subtracted
from the global mutation matrix. (Default: TRUE)

max_window_size_gen
The maximum size of a window before it is removed. (Default: 20,000,000)

verbose Boolean determining the verbosity of the function. (Default: FALSE)

determine_regional _similarity 17

Details

First a global mutation matrix is calculated using all mutations. Next, a sliding window is used. This
means that we create a window containing the first x mutations. The cosine similarity, between the
mutation profiles of this window and the global mutation matrix, is then calculated. The window
then slides y mutations to the right and the cosine similarity is again calculated. This process is
repeated until the final mutation on a chromosome is reached. This process is performed separately
per chromosome. Windows that span a too large region of the genome are removed, because they
are unlikely to contain biologically relevant information.

The number of mutations that the window slides to the right in each step is called the stepsize. The
best stepsize depends on the window size. In general, we recommend setting the stepsize between
25 window size.

The analysis can be performed for trinucleotides contexts, for a larger context, or for just the base
substitutions. A smaller context might miss detailed differences in mutation profiles, but is also less
noisy. We recommend using a smaller extension when analyzing small datasets.

It’s possible to correct for the oligonucleotide frequency of the windows. This is done by calculating
the cosine similarity of the oligonucleotide frequency between each window and the genome. The
cosine similarity of the mutation profiles is then divided by the oligonucleotide similarity. This
ensures that regions with an abnormal oligonucleotide frequency don’t show up as having a very
different profile. The oligonucleotide frequency correction slows down the function, so we advise
the user to keep it off for exploratory analyses and to only turn it on to validate interesting results.

By default the mutations in a window are subtracted from the global mutation matrix, before cal-
culating the cosine similarity. This increases sensitivity, but could also decrease specificity. This
subtraction can be turned of with the ’exclude_self_mut_mat’ argument.

Value

A "region_cossim" object containing both the cosine similarities and the settings used in this anal-
ysis.

See Also

plot_regional_similarity

Other regional_similarity: plot_regional_similarity()

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

We pool all the variants together, because the function doesn't work well
with a limited number of mutations. Still, in practice we recommend to use
more mutations that in this example.

gr = unlist(grl)

Specifiy the chromosomes of interest.

18 enrichment_depletion_test

chromosomes <- names(genome(gr)[1:3])

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Determine the regional similarities. Here we use a small window size to make the function work.
In practice, we recommend a larger window size.
regional_sims = determine_regional_similarity(gr,

ref_genome,

chromosomes,

window_size = 40,

stepsize = 10,

max_window_size_gen = 40000000

)

Here we use an extensiof of @ to reduce noise.
We also turned verbosity on, so you can see at what step the function is.
This can be useful on large datasets.
regional_sims_0_extension = determine_regional_similarity(gr,

ref_genome,

chromosomes,

window_size = 40,

stepsize = 10,

extension = 0,

max_window_size_gen = 40000000,

verbose = TRUE

enrichment_depletion_test
Test for enrichment or depletion of mutations in genomic regions

Description

This function aggregates mutations per group (optional) and performs an enrichment depletion test.

Usage

enrichment_depletion_test(x, by = NA, p_cutoffs = 0.05, fdr_cutoffs = 0.1)

Arguments
X data.frame result from genomic_distribution()
by Optional grouping variable, e.g. tissue type
p_cutoffs Significance cutoff for the p value. Default: 0.05

fdr_cutoffs Significance cutoff for the fdr. Default: 0.1

extract_signatures 19

Value

data.frame with the observed and expected number of mutations per genomic region per group (by)
or sample

See Also

genomic_distribution, plot_enrichment_depletion

Examples

See the 'genomic_distribution()' example for how we obtained the
following data:
distr <- readRDS(system.file("states/distr_data.rds”,

package = "MutationalPatterns”

))
tissue <- c(rep(”colon”, 3), rep("intestine”, 3), rep("liver”, 3))

Perform the enrichment/depletion test by tissue type.
distr_test <- enrichment_depletion_test(distr, by = tissue)

Or without specifying the 'by' parameter, to pool all samples.
distr_single_sample <- enrichment_depletion_test(distr)

Use different significance cutoffs for the pvalue and fdr
distr_strict <- enrichment_depletion_test(distr,

by = tissue,

p_cutoffs = 0.01, fdr_cutoffs = 0.05
)

Use multiple (max 3) significance cutoffs.
This will vary the number of significance stars.
distr_multistars <- enrichment_depletion_test(distr,
by = tissue,
p_cutoffs = c(0.05, 0.01, 0.005),
fdr_cutoffs = c(0.1, 0.05, 0.01)

extract_signatures Extract mutational signatures from 96 mutation matrix using NMF

Description

Decomposes trinucleotide count matrix into signatures and contribution of those signatures to the
spectra of the samples/vcf files.

20

Usage

extract_signatures(

mut_matrix,
rank,
nrun = 200,

nmf_type = c("regular”, "variational_bayes"),

single_core = FALSE,
fudge = NULL,
seed = 123456

extract_si gnatures

Arguments

mut_matrix
rank

nrun

nmf_type

single_core

fudge

seed

Value

96 mutation count matrix
Number of signatures to extract

Number of iterations, default = 200. A lower number will be faster, but result in
less accurate results.

Type of NMF to be used. Possible values: * ’regular’ * ’variational_bayes’
The ’regular’ method comes from the NMF package. The ’variational_bayes’
method comes from the ccfindR package. This method uses bayesian inference,
which makes it easier to determine the mathematically optimal number of sig-
natures.

Boolean. If TRUE, it forces the NMF algorithm to use only a single core. This
can sometimes prevent issues. Doesn’t apply to variational-bayes NMF

Small positive number that is used for the variational _bayes NMF. Setting this
to a small value like 0.0001 can prevent errors from occurring, when extracting
many signatures at once. In general, we recommend extracting less signatures
when errors occur, but this parameter can be used when that is not an option.
Default = NULL.

Random seed used for the regular NMF, default = 123456

Named list of mutation matrix, signatures and signature contribution

See Also

mut_matrix

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,

package =
))

"MutationalPatterns”

This function is computationally intensive.
nmf_res <- extract_signatures(mut_mat, rank = 2)

fit_to_signatures 21

It's also possible to use a variational Bayes method.
It requires the ccfindR package to work.
nmf_res <- extract_signatures(mut_mat, rank = 2, nmf_type = "variational_bayes")

fit_to_signatures Find optimal nonnegative linear combination of mutation signatures
to reconstruct the mutation matrix.

Description
Find the linear combination of mutation signatures that most closely reconstructs the mutation ma-
trix by solving the nonnegative least-squares constraints problem.

Usage

fit_to_signatures(mut_matrix, signatures)

Arguments
mut_matrix mutation count matrix (dimensions: x mutation types X n samples)
signatures Signature matrix (dimensions: x mutation types X n signatures)
Value

Named list with signature contributions and reconstructed mutation matrix

See Also

mut_matrix,fit_to_signatures_strict,fit_to_signatures_bootstrapped

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Get signatures
signatures <- get_known_signatures()

Perform the fitting
fit_res <- fit_to_signatures(mut_mat, signatures)

This will also work for indels and dbs.
An example is given for indels

Get The indel counts
See 'count_indel_contexts()' for more info on how to do this.

22 fit_to_signatures_bootstrapped

indel_counts <- readRDS(system.file("states/blood_indel_counts.rds"”,
package = "MutationalPatterns”

)

Get signatures
signatures <- get_known_signatures(”indel")

fit_to_signatures(indel_counts, signatures)

fit_to_signatures_bootstrapped
Fit mutational signatures to a mutation matrix with bootstrapping

Description

Bootstrapping the signature refitting shows how stable the refit is, when small changes are made
to the mutation matrix. You can be more confident in the refitting results, when the differences in
signature contributions are small between bootstrap iterations.

Usage

fit_to_signatures_bootstrapped(
mut_matrix,
signatures,
n_boots = 1000,
max_delta = 0.004,
method = c(”"strict”, "regular”, "regular_10+", "strict_best_subset”,
"strict_backwards"),
verbose = TRUE

)
Arguments
mut_matrix mutation count matrix (dimensions: x mutation types X n samples)
signatures Signature matrix (dimensions: x mutation types X n signatures)
n_boots Number of bootstrap iterations.
max_delta The maximum difference in original vs reconstructed cosine similarity between
two iterations. Only used with method strict.
method The refitting method to be used. Possible values: * ’strict’ Uses fit_to_signatures_strict

with the default (backwards selection) method; * regular’ Uses fit_to_signatures;
* ’regular_10+" Uses fit_to_signatures, but removes signatures with less than 10
variants.; * ’strict_best_subset’ Uses fit_to_signatures_strict with the *best_subset’
method; * ’strict_backwards’ Uses fit_to_signatures_strict with the backwards
selection method. This is the same as the ’strict’ method;

verbose Boolean. If TRUE, the function will show how far along it is.

fit_to_signatures_bootstrapped 23

Details

The mutation matrix is resampled 'n_boots’ times. Resampling is done per column (sample)
with replacement. The row weights are used as probabilities. On each resampled matrix the
*fit_to_signatures()’ or ’fit_to_signatures_strict()’ function is applied. In the end a matrix is re-
turned with the contributions for each bootstrap iteration. Each row is a single bootstrap iteration
from a single sample. The method you choose determines how strict the signature refitting is. The
‘regular’ and "regular_10+ methods often suffer from a lot of overfitting, however this is less of
an issue when you refit on an limited number of signatures. The ’strict’ method suffers less from
overfitting, but can suffer from more signature misattribution. The best method will depend on your
data and research question.

Value

A matrix showing the signature contributions across all the bootstrap iterations.

See Also

mut_matrix, fit_to_signatures_strict, fit_to_signatures_bootstrapped

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds"”,
package = "MutationalPatterns”

)

Get pre-defined signatures
signatures <- get_known_signatures()

Fit to signatures with bootstrapping
Here we use a very low "n_boots” to reduce the runtime.
For real uses, a much higher value is required.
contri_boots <- fit_to_signatures_bootstrapped(mut_mat,
signatures,
n_boots = 2,
max_delta = 0.004
)

Use the regular refit method
contri_boots <- fit_to_signatures_bootstrapped(mut_mat,

signatures,
n_boots = 2,
method = "regular”

)

24

fit_to_signatures_strict

fit_to_signatures_strict
Fit mutational signatures to a mutation matrix with less overfitting

Description

Refitting signatures with this function suffers less from overfitting. The strictness of the refit-
ting is dependent on 'max_delta’. A downside of this method is that it might increase signa-
ture misattribution. Different signatures might be attributed to similar samples. You can use
*fit_to_signatures_bootstrapped()’, to see if this is happening. Using less signatures for the refit-
ting will decrease this issue. Fitting less strictly will also decrease this issue.

Usage
fit_to_signatures_strict(
mut_matrix,
signatures,
max_delta = 0.004,
method = c("backwards”, "best_subset”)
)
Arguments
mut_matrix Mutation count matrix (dimensions: x mutation types X n samples)
signatures Signature matrix (dimensions: x mutation types X n signatures)
max_delta The maximum difference in original vs reconstructed cosine similarity between
two iterations.
method The method used to select signatures.
Details

Find a linear non-negative combination of mutation signatures that reconstructs the mutation ma-
trix. Signature selection (feature selection) is done to reduce overfitting. This can be done via either
a ’backwards’ (default) or ’best_subset’ method. The ’backwards’ method starts by achieving an
optimal reconstruction via ’fit_to_signatures’. The signature with the lowest contribution is then re-
moved and refitting is repeated. This is done in an iterative fashion. Each time the cosine similarity
between the original and reconstructed profile is calculated. The ’best_subset’ method also starts
by achieving an optimal reconstruction via ’fit_to_signatures’. Signature refitting is then repeated
for each combination of n-1 signatures, where n is the number of signatures in the signature matrix.
The cosine similarity between the original and reconstructed profile is calculated for each combina-
tion. The combination with the highest cosine similarity is then chosen. This is done in an iterative
fashion for n-2, n-3, ect. With both methods, iterations are stopped when the difference between
two iterations becomes more than *'max_delta’. The second-last set of signatures is then used for a
final refit.

The ’best_subset’ method can result in more accurate results than the *backwards’ method, however
it becomes very slow when a large amount of signatures are used for refitting. We recommend only

genomic_distribution 25

using the ’best_subset’ method when fitting a maximum of 10-15 signatures. When using the
’best_subset’ method a lower max_delta’ should be used, as the expected differences in cosine
similarity are reduced.

Value

A list containing a fit_res object, similar to ’fit_to_signatures’ and a list of ggplot graphs that for
each sample shows in what order the signatures were removed and how this affected the cosine
similarity.

See Also

mut_matrix, fit_to_signatures, fit_to_signatures_bootstrapped

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds"”,
package = "MutationalPatterns”

)

Get signatures
signatures <- get_known_signatures()

Fit to signatures strict
strict_refit <- fit_to_signatures_strict(mut_mat, signatures, max_delta = 0.004)

fit_res similar to 'fit_to_signatures()'
fit_res <- strict_refit$fit_res

list of ggplots that shows how the cosine similarity was reduced during the iterations
fig_1 <- strict_refit$sim_decay_fig

Fit to signatures with the best_subset method
This can be more accurate than the standard backwards method,
but can only be used with a limited amount of signatures.
Here we use only 5 signatures to reduce the runtime.
In practice up to 10-15 signatures could be used.
best_subset_refit <- fit_to_signatures_strict(mut_mat,
signatures[,1:5],
max_delta = 0.002,
method = "best_subset”

genomic_distribution Find overlaps between mutations and a genomic region.

26 genomic_distribution

Description

Function finds the number of mutations that reside in genomic region and takes surveyed area of
genome into account.

Usage

genomic_distribution(vcf_list, surveyed_list, region_list)

Arguments

vef_list GRangesList or GRanges object.

surveyed_list A GRangesList or a list with GRanges of regions of the genome that have been
surveyed (e.g. determined using GATK CallableLoci).

region_list A GRangesList or a list with GRanges objects containing locations of genomic
regions.

Value

A data.frame containing the number observed and number of expected mutations in each genomic
region.

See Also

read_vcfs_as_granges

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Use biomaRt to obtain data.

We can query the BioMart database, but this may take a long time,
so we take some shortcuts by loading the results from our

examples. The corresponding code for downloading the data can be
found above the command we run.

mart="ensemble”
library(biomaRt)

regulatory <- useEnsembl(biomart="regulation”,

dataset="hsapiens_regulatory_feature”,

GRCh = 37)

regulatory <- readRDS(system.file("states/regulatory_data.rds",
package = "MutationalPatterns”

))

Download the regulatory CTCF binding sites and convert them to

genomic_distribution

a GRanges object.

CTCF <- getBM(attributes = c('chromosome_name',

'chromosome_start',
'chromosome_end',
'feature_type_name'),

filters = "regulatory_feature_type_name”,

values = "CTCF Binding Site",

mart = regulatory)

CTCF_g <- reduce(GRanges(CTCF$chromosome_name,
IRanges(CTCF$chromosome_start,
CTCF$chromosome_end)))

T E E EE R

CTCF_g <- readRDS(system.file("states/CTCF_g_data.rds",

package = "MutationalPatterns”
))
Download the promoter regions and conver them to a GRanges object.
promoter = getBM(attributes = c('chromosome_name', 'chromosome_start',
'chromosome_end', 'feature_type_name'),
filters = "regulatory_feature_type_name”,
values = "Promoter”,
mart = regulatory)
promoter_g = reduce(GRanges(promoter$chromosome_name,
IRanges(promoter$chromosome_start,
promoter$chromosome_end)))

promoter_g <- readRDS(system.file("states/promoter_g_data.rds”,
package = "MutationalPatterns”

)

flanking = getBM(attributes = c('chromosome_name',

'chromosome_start',

'chromosome_end',

'feature_type_name'),
filters = "regulatory_feature_type_name”,
values = "Promoter Flanking Region”,

mart = regulatory)
flanking_g = reduce(GRanges(
flanking$chromosome_name,
IRanges(flanking$chromosome_start,
flanking$chromosome_end)))

N E

flanking_g <- readRDS(system.file("states/promoter_flanking_g_data.rds",
package = "MutationalPatterns”

)
regions <- GRangesList(promoter_g, flanking_g, CTCF_g)
names(regions) <- c("Promoter"”, "Promoter flanking”, "CTCF")

Use a naming standard consistently.
seqlevelsStyle(regions) <- "UCSC”

27

28 get_dbs_context

Get the filename with surveyed/callable regions
surveyed_file <- system.file("extdata/callableloci-sample.bed”,
package = "MutationalPatterns”

)

Import the file using rtracklayer and use the UCSC naming standard
library(rtracklayer)

surveyed <- import(surveyed_file)

seqlevelsStyle(surveyed) <- "UCSC”

For this example we use the same surveyed file for each sample.
surveyed_list <- rep(list(surveyed), 9)

Calculate the number of observed and expected number of mutations in
each genomic regions for each sample.
distr <- genomic_distribution(vcfs, surveyed_list, regions)

get_dbs_context Get DBS context

Description

Get the DBS COSMIC context on an GRanges/GRangesList object. It applies the get_dbs_context_gr
function to each gr in the input, which works by changing the REF and ALT columns of the GRanges
into the COSMIC types.

Usage

get_dbs_context(vef_list)

Arguments

vef_list GRanges/GRangesList

Value

A version of the GRanges/GRangesList object, with modified REF and ALT columns.

See Also

get_mut_type, read_vcfs_as_granges

Other DBS: count_dbs_contexts(), plot_compare_dbs(), plot_dbs_contexts(), plot_main_dbs_contexts()

get_indel_context 29

Examples

Get GRangesList with DBS.
See 'get_mut_type' or 'read_vcfs_as_granges' for more info on how to do this.
dbs_grl <- readRDS(system.file("states/blood_grl_dbs.rds",

package = "MutationalPatterns”

))

Set context DBS
get_dbs_context(dbs_grl)

get_indel_context Get indel contexts

Description

Get indel contexts

Usage

get_indel_context(vcf_list, ref_genome)

Arguments
vef_list GRanges or GRangesList object containing Indel mutations. The mutations
should be called similarly to HaplotypeCaller.
ref_genome BSgenome reference genome object
Details

Determines the COSMIC context from a GRanges or GRangesList object containing Indel muta-
tions. It applies the get_indel_context_gr function to each gr in the input. It searches for repeat
units both to the left and right of the indel.

Value

A modified version of the input grl. In each gr two columns have been added. "muttype" showing
the main indel type and "muttype_sub" which shows the subtype. The subtype is either the number
of repeats or the microhomology length.

See Also

read_vcfs_as_granges, get_mut_type

Other Indels: count_indel_contexts(), plot_compare_indels(), plot_indel_contexts(),
plot_main_indel_contexts()

30 get_known_signatures

Examples

Get a GRangesList or GRanges object with only indels.
See 'read_vcfs_as_granges' or 'get_mut_type' for more info on how to do this.
indel_grl <- readRDS(system.file("states/blood_grl_indel.rds",

package = "MutationalPatterns”

)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get the indel contexts
get_indel_context(indel_grl, ref_genome)

get_known_signatures Get known signatures

Description

This function loads a signature matrix of pre-defined signatures. It can retrieve signatures for differ-
ent types of mutations. It can also retrieve signatures from different sources. Additionally, different
signature types can be retrieved. (The possible types are: Reference, tissue specific or drug expo-
sure signatures.) For the COSMIC signatures both GRCh37, GRCh38 and mm10 versions of the
signatures can be used. Finally, the user can choose whether to include possible artifacts. If no
signatures have been defined for a specific combination of options, then an error is given.

Usage

get_known_signatures(
muttype = c("snv"”, "dbs", "indel”, "tsb_snv"),
source = c("COSMIC", "SIGNAL", "SPARSE", "COSMIC_v3.1", "COSMIC_v3.2"),
sig_type = c("reference”, "exposure”, "tissue"),
incl_poss_artifacts = FALSE,
tissue_type = c(NA, "Biliary", "Bladder”, "Bone"”, "Breast”, "Cervix", "CNS",
"Colorectal”, "Esophagus"”, "Head"”, "Kidney", "Liver"”, "Lung", "Lymphoid"”, "Myeloid”,

"Ovary"”, "Pancreas"”", "Prostate"”, "Skin", "Stomach"”, "Thyroid"”, "Uterus"),
genome = c(”"GRCh37", "GRCh38", "mm10")
)
Arguments

muttype The type of mutations. Possible values: * ’snv’ (default); * ’dbs’; * ’indel’; *
’tsb_snv’ transcription strand bias snv;

source The signature source. Possible values: * *COSMIC’ (default. Currently v3.2);
*COSMIC_v3.1’; * *"COSMIC_v3.2’; * 'SIGNAL’; * ’'SPARSE’;

sig_type The type of signature. Possible values: * ’reference’ (default); * ’exposure’; *

’tissue’;

get_known_signatures 31

incl_poss_artifacts
Whether to include possible artifacts. (default: TRUE)

tissue_type The specific tissue to select signatures from. Can only be used when looking at
tissue specific signatures. Keep this at NA to see tissue specific signatures for
all tissues.

genome The genome version that is used. This only works for COSMIC signatures. *
’GRCh37’ (default); * ’"GRCh38’; * 'mm10’;

Details

Possible combinations: COSMIC: - all muttypes. (tsb_snv is the same as in version 3.1) - reference
- Can include possible artifacts for SNVs - For the SNVs and DBSs both GRCh37 and GRCh38
versions are available

COSMIC_v3.1: - all muttypes. - reference - Can include possible artifacts for SNVs

SIGNAL: - SNV. (+ DBS, when using exposure signatures.) - all signature types - Can include
possible artifacts for reference SNVs

SPARSE: - SNV - reference
Artifacts can be included when using reference signatures for SNVs with COSMIC and SIGNAL

The signatures bundled in this package came from several sources. Please cite the associated papers
if you use them.

The COSMIC signatures were downloaded from: https://cancer.sanger.ac.uk/signatures Currently,
both version 3.2 and 3.1 are available. Paper: Alexandrov, L.B. et al., 2020, Nature

The SIGNAL signatures were downloaded from: https://signal.mutationalsignatures.com/ They
were downloaded on: 03 July 2020. Paper: Andrea Degasperi et al., 2020, Nature Cancer Exposure
paper: Jill E Kucab et al., 2019, Cell

The SPARSE signatures were downloaded from: https://www.biorxiv.org/content/10.1101/384834v?2
They were downloaded on: 03 July 2020. Paper: Daniele Ramazzotti et al., 2019, Bioarchive

Value

A signature matrix

Examples

Get reference snv signature from COSMIC
get_known_signatures()

Get reference snv signature from COSMIC,
including potential artifacts.
get_known_signatures(incl_poss_artifacts = TRUE)

Get a GRCh38 version of the signatures
get_known_signatures(genome = "GRCh38")

Get DBS signatures
get_known_signatures("dbs")

32 get_mut_type

Get indel signatures
get_known_signatures(”indel")

Get transcription strand bias snv signatures
get_known_signatures("tsb_snv")

Get COSMIC version 3.1 of the signatures
get_known_signatures(source = "COSMIC_v3.1")

Get reference signatures from SIGNAL
get_known_signatures(source = "SIGNAL")

Get reference signatures from SIGNAL,
including potential artifacts
get_known_signatures(source = "SIGNAL"”, incl_poss_artifacts = TRUE)

Get exposure signatures from SIGNAL
get_known_signatures(source = "SIGNAL", sig_type = "exposure")

Get DBS exposure signatures from SIGNAL
get_known_signatures(”"dbs”, source = "SIGNAL", sig_type = "exposure")

Get all tissue specific signatures from SIGNAL
get_known_signatures(source = "SIGNAL", sig_type = "tissue")

Get Bladder specific signatures from SIGNAL
get_known_signatures(

source = "SIGNAL",

sig_type = "tissue”,

tissue_type = "Bladder”
)

If you use an incorrect tissue_type an error is given.

Get sparse signatures

get_known_signatures(source = "SPARSE")
get_mut_type Get variants with mut_type from GRanges
Description

Get the variants of a certain mutation type from a GRanges or GRangesList object. All other variants
will be filtered out. It is assumed that DBS/MBSs are called as separate SNVs. They are merged
into single variants. The type of variant can be chosen with type.

Usage

get_mut_type(
vef_list,

get_sim_tb 33

type = c("snv", "indel”, "dbs", "mbs"),
predefined_dbs_mbs = FALSE

)
Arguments
vef_list GRanges/GRangesList
type The type of variant that will be returned.

predefined_dbs_mbs
Boolean. Whether dbs and mbs variants have been predefined in your vcf. This
function by default assumes that dbs and mbs variants are present in the vcf as
snvs, which are positioned next to each other. If your dbs/mbs variants are called
separately you should set this argument to TRUE. (default = FALSE)

Value

GRanges/GRangesList of the desired mutation type.

See Also

read_vcfs_as_granges

Examples

Get a GRanges list object.
See 'read_vcfs_as_granges' for more info how to do this.
grl <- readRDS(system.file("”states/blood_grl.rds",

package = "MutationalPatterns”

)

Here we only use two samples to reduce runtime
grl <- grl[1:2]

Get a specific mutation type.
snv_grl <- get_mut_type(grl, "snv")
indel_grl <- get_mut_type(grl, "indel")
dbs_grl <- get_mut_type(grl, "dbs")
mbs_grl <- get_mut_type(grl, "mbs")

get_sim_tb An S84 generic to get the sim_tb from a region_cossim object.

Description

An S4 generic to get the sim_tb from a region_cossim object.

An S4 method for the get_sim_tb generic

34

Usage

get_sim_tb(x)

S4 method for signature 'region_cossim'
get_sim_tb(x)
Arguments

X A region_cossim object

region_cossim A region_cossim object

Value

A tibble containing the calculated similarities of the windows.

A tibble containing the calculated similarities of the windows.

Methods (by class)

* region_cossim: Get the sim_tb from a region_cossim object.

lengthen_mut_matrix

lengthen_mut_matrix Lengthen mutation matrix

Description

A mutation_matrix calculated on a GRangesList or GR object modified by ’split_muts_region()’,
will contain a column per combination of sample and genomic region. In essence different regions
are treated as different samples. This function will transform the matrix, so that these regions are
instead treated as different mutation types. For example, instead of *C[C>T]G’, you might have
the feature *C[C>T]G Promoter’. The number of rows in the matrix will thus be multiplied by the
number of regions. After using ’split_muts_region()’, use *'mut_matrix()’ to get a mut_matrix that
can be used for this function. The result can be plotted with plot_profile_region, but could also be

used for NMF, refitting ect.

Usage

lengthen_mut_matrix(mut_matrix)

Arguments

mut_matrix Mutation matrix

Value

mut_matrix

merge_signatures 35

See Also

Other genomic_regions: bin_mutation_density(), plot_profile_region(), plot_spectrum_region(),
split_muts_region()

Examples

See the 'split_muts_region()' and 'mut_matrix()' examples for how we obtained the
mutation matrix information:
mut_mat_split_region <- readRDS(system.file("states/mut_mat_data.rds",

package = "MutationalPatterns”

)

long_mut_mat <- lengthen_mut_matrix(mut_mat_split_region)

This also works on indels:

See the 'split_muts_region()' and 'count_indels_context()' examples for how we

obtained the indel counts:

indel_counts_split <- readRDS(system.file("states/blood_indels_counts_split_region.rds",
package = "MutationalPatterns”

))

Lengthen the matrix
lengthen_mut_matrix(indel_counts_split)

merge_signatures Merge signatures based on cosine similarity

Description

This function merges signatures based on their cosine similarity. It iteratively merges the two sig-
natures with the highest cosine similarity. Merging is stopped when the maximum cosine similarity
is lower than the limit.

Usage

merge_signatures(
signatures,
cos_sim_cutoff = 0.8,
merge_char = ";",
verbose = TRUE

Arguments

signatures Signature matrix (dimensions: x mutation types X n signatures)

36

MutationalPatterns

cos_sim_cutoff Cutoff for cosine similarity. Signatures are merged when their cosine similarity
is higher than the limit. Default: 0.8

merge_char Character used to merge the signature names. This character shouldn’t be in the
signature names beforehand. Default: ";"
verbose Verbosity. If TRUE it shows which signatures got merged. Default: TRUE
Value

Signature matrix (dimensions: x mutation types X n signatures)

Examples

Get signatures
signatures <- get_known_signatures()

Merge signatures
merge_signatures(signatures)
Merge signatures using a stricter cutoff

merge_signatures(signatures, cos_sim_cutoff = 0.9)

Merge signatures using a different merging character
merge_signatures(signatures, merge_char = "_")

Merge signatures silently
merge_signatures(signatures, verbose = FALSE)

MutationalPatterns MutationalPatterns: an integrative R package for studying patterns in
base substitution catalogues

Description

This package provides an extensive toolset for the characterization and visualization of a wide
range of mutational patterns from base substitution catalogues. These patterns include: mutational
signatures, transcriptional strand bias, genomic distribution and association with genomic features.

Details

The package provides functionalities for both extracting mutational signatures de novo and infer-
ring the contribution of previously identified mutational signatures. Furthermore, MutationalPat-
terns allows for easy exploration and visualization of other types of patterns such as transcriptional
strand asymmetry, genomic distribution and associations with (publicly available) annotations such
as chromatin organization. In addition to identification of active mutation-inducing processes, this
approach also allows for determining the involvement of specific DNA repair pathways. For exam-
ple, presence of a transcriptional strand bias in genic regions may indicate activity of transcription
coupled repair.

MutationalPatterns-defunct 37

Author(s)

Francis Blokzijl, Roel Janssen, Ruben van Boxtel, Edwin Cuppen Maintainers: Francis Blokzijl,
UMC Utrecht <f.blokzijl @umcutrecht.nl> Roel Janssen, UMC Utrecht <R.R.E.Janssen-10@umcutrecht.nl>

References

Alexandrov,L.B. et al. (2013) Signatures of mutational processes in human cancer. Nature, 500,
415-21.

BlokzijLLF. et al. (2016) Tissue-specific mutation accumulation in human adult stem cells during
life. Nature, in press.

Borchers,H.W. (2016) pracma: Practical Numerical Math Functions.

Durinck,S. et al. (2005) BioMart and Bioconductor: A powerful link between biological databases
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Gaujoux,R. and Seoighe,C. (2010) A flexible R package for nonnegative matrix factorization. BMC
Bioinformatics, 11, 367.

Haradhvala,N.J. et al. (2016) Mutational Strand Asymmetries in Cancer Genomes Reveal Mecha-
nisms of DNA Damage and Repair. Cell, 1-12.

Helleday,T. et al. (2014) Mechanisms underlying mutational signatures in human cancers. Nat.
Rev. Genet., 15, 585-598.

Lawrence,M. et al. (2013) Software for computing and annotating genomic ranges. PLoS Comput.
Biol., 9, e1003118.

Pleasance,E.D. et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer
genome. Nature, 463, 191-196.

See Also

https://github.com/CuppenResearch/MutationalPatterns

MutationalPatterns-defunct
Defunct functions in package ‘MutationalPattern’

Description

These functions are defunct and no longer available.

Details

Defunct functions are: mutation_context, mutation_types, strand_from_vcf, explained_by_signatures

https://github.com/CuppenResearch/MutationalPatterns

38 mut_192_occurrences

mutations_from_vcf Retrieve base substitutions from vcf

Description

A function to extract base substitutions of each position in vcf

Usage

mutations_from_vcf(vcf)

Arguments

vef A CollapsedVCF object

Value

Character vector with base substitutions

See Also

read_vcfs_as_granges

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

muts <- mutations_from_vcf(vcfs[[1]])

mut_192_occurrences Count 192 trinucleotide mutation occurrences

Description

@details This function is called by mut_matrix_stranded. The 192 trinucleotide context is the 96
trinucleotide context combined with the strands. This function calculates the 192 trinucleotide
context for all variants. and then splits these per GRanges (samples). It then calculates how often
each 192 trinucleotide context occurs.

Usage

mut_192_occurrences(type_context, strand, gr_sizes)

mut_96_occurrences 39

Arguments

type_context result from type_context function

strand factor with strand information for each position, for example "U" for untran-
scribed, "T" for transcribed strand, and "-" for unknown
gr_sizes A vector indicating the number of variants per GRanges
Value

Mutation matrix with 192 mutation occurrences and 96 trinucleotides for two strands

mut_96_occurrences Count 96 trinucleotide mutation occurrences

Description

@details This function is called by mut_matrix. It calculates the 96 trinucleotide context for all vari-

ants and then splits these per GRanges (samples). It then calculates how often each 96 trinucleotide
context occurs.

Usage

mut_96_occurrences(type_context, gr_sizes)

Arguments

type_context result from type_context function

gr_sizes A vector indicating the number of variants per GRanges

Value

Mutation matrix with 96 trinucleotide mutation occurrences

mut_context Retrieve context of base substitutions

Description
A function to extract the bases 3’ upstream and 5’ downstream of the base substitutions from the
reference genome. The user an choose how many bases are extracted.

Usage

mut_context(vcf, ref_genome, extension = 1)

40 mut_matrix

Arguments
vef A Granges object
ref_genome Reference genome
extension The number of bases, that’s extracted upstream and downstream of the base
substitutions. (Default: 1).
Value

Character vector with the context of the base substitutions

See Also

read_vcfs_as_granges,

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

))

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get the standard context
mut_context <- mut_context(vcfs[[1]], ref_genome)

Get larger context
mut_context_larger <- mut_context(vcfs[[1]], ref_genome, extension = 2)

mut_matrix Make mutation count matrix of 96 trinucleotides

Description

Make 96 trinucleotide mutation count matrix

Usage

mut_matrix(vcf_list, ref_genome, extension = 1)

Arguments
vef_list GRangesList or GRanges object.
ref_genome BSgenome reference genome object
extension The number of bases, that’s extracted upstream and downstream of the base

substitutions. (Default: 1).

mut_matrix_stranded 41

Value

96 mutation count matrix

See Also

read_vcfs_as_granges

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Construct a mutation matrix from the loaded VCFs in comparison to the
ref_genome.
mut_mat <- mut_matrix(vcf_list = grl, ref_genome = ref_genome)

Construct a mutation matrix with a larger context.
This is most usefull when you have many mutations per sample.
mut_mat_extended <- mut_matrix(vcf_list = grl, ref_genome = ref_genome, extension = 2)

mut_matrix_stranded Make mutation count matrix of 96 trinucleotides with strand informa-
tion

Description

Make a mutation count matrix with 192 features: 96 trinucleotides and 2 strands, these can be
transcription or replication strand

Usage

mut_matrix_stranded(
vef_list,
ref_genome,
ranges,
mode = "transcription”,
extension = 1

42

Arguments

vef_list
ref_genome

ranges

mode

extension

Value

mut_matrix_stranded

GRangesList or GRanges object.
BSgenome reference genome object

GRanges object with the genomic ranges of: 1. (transcription mode) the gene
bodies with strand (+/-) information, or 2. (replication mode) the replication
strand with ’strand_info’ metadata

"transcription” or "replication", default = "transcription”

The number of bases, that’s extracted upstream and downstream of the base
substitutions. (Default: 1).

192 mutation count matrix (96 X 2 strands)

See Also

read_vcfs_as_granges, mut_matrix, mut_strand

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Transcription strand analysis:
You can obtain the known genes from the UCSC hgl9 dataset using

Bioconductor:

BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")
library("TxDb.Hsapiens.UCSC.hg19.knownGene")
genes_hg19 <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)

mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hgl9,
mode = "transcription”

)

You can also use a longer context
mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19,
mode = "transcription”, extension = 2

)

Replication strand analysis:
Read example bed file with replication direction annotation
repli_file <- system.file("extdata/ReplicationDirectionRegions.bed"”,

package =

"MutationalPatterns”

mut_strand 43

)
repli_strand <- read.table(repli_file, header = TRUE)

repli_strand_granges <- GRanges(
segnames = repli_strand$Chr,
ranges = IRanges(
start = repli_strand$Start + 1,
end = repli_strand$Stop
),
strand_info = repli_strand$Class
)
UCSC seqlevelsstyle
seqlevelsStyle(repli_strand_granges) <- "UCSC"
The levels determine the order in which the features
will be countend and plotted in the downstream analyses
You can specify your preferred order of the levels:
repli_strand_granges$strand_info <- factor(
repli_strand_granges$strand_info,
levels = c("left”, "right”)

)
mut_mat_s_rep <- mut_matrix_stranded(grl, ref_genome, repli_strand_granges,
mode = "replication”
)
mut_strand Find strand of mutations
Description

Find strand of mutations

Usage
mut_strand(vcf, ranges, mode = "transcription”)
Arguments
vef GRanges containing the VCF object
ranges GRanges object with the genomic ranges of: 1. (transcription mode) the gene
bodies with strand (+/-) information, or 2. (replication mode) the replication
strand with ’strand_info’ metadata
mode "transcription” or "replication", default = "transcription”
Details

For transcription mode: Definitions of gene bodies with strand (+/-) information should be defined
in a GRanges object.

44

mut_strand

For the base substitutions that are within gene bodies, it is determined whether the "C" or "T" base
is on the same strand as the gene definition. (Since by convention we regard base substitutions as
C>Xor T>X.)

Base substitutions on the same strand as the gene definitions are considered "untranscribed", and
on the opposite strand of gene bodies as "transcribed", since the gene definitions report the coding
or sense strand, which is untranscribed.

non

No strand information "-" is returned for base substitutions outside gene bodies, or base substitutions
that overlap with more than one gene body on the same strand.

For replication mode: Replication directions of genomic ranges should be defined in GRanges
object. The GRanges object should have a "strand_info" metadata column, which contains only
two different annotations, e.g. "left" and "right", or "leading" and "lagging". The genomic ranges
cannot overlap, to allow only one annotation per location.

non

For each base substitution it is determined on which strand it is located. No strand information
is returned for base substitutions in unannotated genomic regions.

With the package we provide an example dataset, see example code.

Value

Character vector with transcriptional strand information with length of vcf: "-" for positions outside
gene bodies, "U" for untranscribed/sense/coding strand, "T" for transcribed/anti-sense/non-coding
strand.

See Also

read_vcfs_as_granges,

Examples

For this example we need our variants from the VCF samples, and

a known genes dataset. See the 'read_vcfs_as_granges()' example

for how to load the VCF samples.

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

For transcription strand:

You can obtain the known genes from the UCSC hgl9 dataset using
Bioconductor:

source("https://bioconductor.org/biocLite.R")

biocLite("TxDb.Hsapiens.UCSC.hg19.knownGene")
library("TxDb.Hsapiens.UCSC.hg19.knownGene")

genes_hgl19 <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)

mut_strand(vcfs[[1]], genes_hgl9, mode = "transcription”)

For replication strand:

Read example bed file with replication direction annotation

Read replistrand data

repli_file <- system.file("extdata/ReplicationDirectionRegions.bed"”,

mut_type

package = "MutationalPatterns”
)
repli_strand <- read.table(repli_file, header = TRUE)
repli_strand_granges <- GRanges(
segnames = repli_strand$Chr,
ranges = IRanges(
start = repli_strand$Start + 1,
end = repli_strand$Stop
),
strand_info = repli_strand$Class
)
UCSC seqlevelsstyle
seqlevelsStyle(repli_strand_granges) <- "UCSC"

45

mut_strand(vcfs[[1]], repli_strand_granges, mode = "transcription”)
mut_type Retrieve base substitution types from a VCF object
Description

A function to extract the base substitutions from a vcf and translate to the 6 common base substitu-

tion types.

Usage

mut_type(vcf)

Arguments

vcf A CollapsedVCF object

Value

Character vector with base substitution types

See Also

read_vcfs_as_granges

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

mut_type(vcfs[[1]1]1)

46 mut_type_occurrences

mut_type_occurrences Count the occurrences of each base substitution type

Description

Count the occurrences of each base substitution type

Usage

mut_type_occurrences(vcf_list, ref_genome)

Arguments
vef_list GRangesList or GRanges object.
ref_genome BSgenome reference genome object
Value

data.frame with counts of each base substitution type for each sample in vcf_list

See Also

read_vcfs_as_granges,

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load a reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get the type occurrences for all VCF objects.
type_occurrences <- mut_type_occurrences(vcfs, ref_genome)

plot_192_profile

plot_192_profile Plot 192 trinucleotide profile

Description

Plot relative contribution of 192 trinucleotides

Usage
plot_192_profile(mut_matrix, colors = NA, ymax = 0.2, condensed = FALSE)

Arguments
mut_matrix 192 trinucleotide profile matrix
colors 6 value color vector
ymax Y axis maximum value, default = 0.2
condensed More condensed plotting format. Default = F.
Value

192 trinucleotide profile plot

See Also

mut_matrix_stranded, extract_signatures, plot_96_profile

Examples

See the 'mut_matrix_stranded()' example for how we obtained the

mutation matrix with transcriptional strand information:

mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,
package = "MutationalPatterns”

)

Plot profile for some of the samples
plot_192_profile(mut_mat_s[, c(1, 4, 7)1)

You can create a more condensed version of the plot
plot_192_profile(mut_mat_s[, c(1, 4, 7)], condensed = TRUE)

It's also possible to plot signatures, for example signatures

generated with NMF

See 'extract_signatures()' on how we obtained these signatures.

nmf_res_strand <- readRDS(system.file("states/nmf_res_strand_data.rds",
package = "MutationalPatterns”

)

Optionally, provide signature names

48 plot_96_profile

colnames(nmf_res_strand$signatures) <- c("”Signature A", "Signature B")

Generate the plot
plot_192_profile(nmf_res_strand$signatures)

plot_96_profile Plot 96 trinucleotide profile

Description

Plot relative contribution of 96 trinucleotides

Usage

plot_96_profile(mut_matrix, colors = NA, ymax = 0.2, condensed = FALSE)

Arguments
mut_matrix 96 trinucleotide profile matrix
colors Optional 6 value color vector.
ymax Y axis maximum value, default = 0.2
condensed More condensed plotting format. Default = F.
Value

96 trinucleotide profile plot

See Also

mut_matrix, plot_profile_heatmap, plot_river

Examples

See the 'mut_matrix()' example for how we obtained the

mutation matrix information:

mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

))

Plot the 96-profile of three samples
plot_96_profile(mut_mat[, c(1, 4, 7)1)

Plot a condensed profile
plot_96_profile(mut_mat[, c(1, 4, 7)1, condensed = TRUE)

It's also possible to plot signatures, for example signatures
generated with NMF
See 'extract_signatures()' on how we obtained these signatures.

plot_bootstrapped_contribution 49

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns”

)

Optionally, provide signature names
colnames(nmf_res$signatures) <- c("”Signature A", "Signature B")

Generate the plot
plot_96_profile(nmf_res$signatures)

plot_bootstrapped_contribution
Plot the bootstrapped signature contributions

Description

Plot the signature contributions retrieved with ’fit_to_signatures_bootstrapped’. The function can
plot both the absolute or the relative signature contribution. The graph can be plotted as either a
jitter plot or as a barplot.

Usage

plot_bootstrapped_contribution(

contri_boots,

mode = c("absolute”, "relative"),

plot_type = c("jitter"”, "barplot”, "dotplot")
)

Arguments

contri_boots matrix showing signature contributions across bootstrap iterations.

mode Either "absolute" for absolute number of mutations, or "relative" for relative
contribution, default = "absolute"
plot_type Either "jitter" for a jitter plot, "barplot" for a barplot, or "dotplot" for a dotplot
Value
A ggplot2 graph
Examples

Get the bootstrapped signature contributions

See 'count_indel_contexts()' for more info on how to do this.

contri_boots <- readRDS(system.file("states/bootstrapped_snv_refit.rds",
package = "MutationalPatterns”

)

Plot bootstrapped contribution

50 plot_compare_dbs

plot_bootstrapped_contribution(contri_boots)

Plot bootstrapped contribution with relative contributions
plot_bootstrapped_contribution(contri_boots, mode = "relative")

Plot bootstrapped contribution with a barplot
plot_bootstrapped_contribution(contri_boots, plot_type = "barplot")

Plot bootstrapped contribution with a dotplot
plot_bootstrapped_contribution(contri_boots, plot_type = "dotplot”, mode = "absolute")

plot_compare_dbs Compare two DBS mutation profiles

Description

Plots two DBS mutation profiles and their difference, reports the residual sum of squares (RSS).

Usage

plot_compare_dbs(
profilel,
profile2,
profile_names = c("profile 1", "profile 2"),
profile_ymax 2,
1,

= 0.
diff_ylim = c(-0.1, 0.1)

Arguments

profilel First mutation profile
profile2 Second mutation profile

profile_names Character vector with names of the mutations profiles used for plotting, default
= c("profile 1", "profile 2")

profile_ymax Maximum value of y-axis (relative contribution) for profile plotting. This can
only be used to increase the y axis. If bars fall outside this limit, the maximum
value is automatically increased. default = 0.2.

diff_ylim Y-axis limits for profile difference plot, default = c¢(-0.1, 0.1)

Value

A ggplot2 object

See Also

plot_compare_profiles, plot_compare_indels, plot_compare_mbs
Other DBS: count_dbs_contexts(), get_dbs_context(), plot_dbs_contexts(), plot_main_dbs_contexts()

plot_compare_indels 51

Examples

Get the DBS counts

See 'count_dbs_contexts()' for more info on how to do this.

dbs_counts <- readRDS(system.file("states/blood_dbs_counts.rds”,
package = "MutationalPatterns”

)

Get DBS refit info.

See 'fit_to_signatures()' for more info on how to do this.

fit_res <- readRDS(system.file("states/dbs_refit.rds",
package = "MutationalPatterns”

)

Compare the reconstructed profile of sample 1 with the original profile
The same thing could be done with a reconstructed profile from NMF.
plot_compare_dbs(dbs_counts[, 1], fit_res$reconstructed[, 11)

You could also compare regular mutation profiles with eachother.
plot_compare_dbs(

dbs_counts[, 11,

dbs_counts[, 2]
)

Or change the names of the profiles
plot_compare_dbs(dbs_counts[, 117,

dbs_counts[, 21,

profile_names = c("Original”, "Reconstructed”)

)

You can also change the y limits.
This can be done separately for the profiles and the different facets.
plot_compare_dbs(dbs_counts[, 1],
dbs_counts[, 21,
profile_ymax = 0.3,
diff_ylim = c(-0.03, 0.03)
)

plot_compare_indels Compare two indel mutation profiles

Description

Plots two indel mutation profiles and their difference, reports the residual sum of squares (RSS).

Usage

plot_compare_indels(
profilel,
profile2,

52 plot_compare_indels

profile_names = c("profile 1", "profile 2"),
profile_ymax = 0.2,
diff_ylim = c(-0.1, 0.1)
)
Arguments
profilel First mutation profile
profile2 Second mutation profile

profile_names Character vector with names of the mutations profiles used for plotting, default
= c("profile 1", "profile 2")

profile_ymax Maximum value of y-axis (relative contribution) for profile plotting. This can
only be used to increase the y axis. If bars fall outside this limit, the maximum
value is automatically increased. default = 0.2.

diff_ylim Y-axis limits for profile difference plot, default = c¢(-0.1, 0.1)

Value

A ggplot2 object

See Also

plot_compare_profiles, plot_compare_dbs, plot_compare_mbs

Other Indels: count_indel_contexts(), get_indel_context(), plot_indel_contexts(), plot_main_indel_context:

Examples

Get the indel counts

See 'count_indel_contexts()' for more info on how to do this.

indel_counts <- readRDS(system.file("states/blood_indel_counts.rds",
package = "MutationalPatterns”

)

Get indel refit info.

See 'fit_to_signatures()' for more info on how to do this.

fit_res <- readRDS(system.file("states/indel_refit.rds",
package = "MutationalPatterns”

)

Compare the reconstructed profile of sample 1 with the original profile
The same thing could be done with a reconstructed profile from NMF.
plot_compare_indels(indel_counts[, 1], fit_res$reconstructed[, 11)

You could also compare regular mutation profiles with eachother.
plot_compare_indels(

indel_counts[, 1],

indel_counts[, 2]

)

Or change the names of the profiles

plot_compare_mbs 53

plot_compare_indels(indel_counts[, 1],
indel_counts[, 21,
profile_names = c("Original”, "Reconstructed”)

)

You can also change the y limits.
This can be done separately for the profiles and the different facets.
plot_compare_indels(indel_counts[, 117,
indel_counts[, 2],
profile_ymax = 0.3,
diff_ylim = c(-0.03, 0.03)
)

plot_compare_mbs Compare two mbs mutation profiles

Description

Plots two mbs mutation profiles and their difference, reports the residual sum of squares (RSS).

Usage

plot_compare_mbs(
profilel,
profile2,
profile_names = c("profile 1", "profile 2"),
profile_ymax = 1,
diff_ylim = c(-0.5, 0.5)

)

Arguments
profilel First mutation profile
profile2 Second mutation profile

profile_names Character vector with names of the mutations profiles used for plotting, default
= c("profile 1", "profile 2")

profile_ymax Maximum value of y-axis (relative contribution) for profile plotting. This can
only be used to increase the y axis. If bars fall outside this limit, the maximum
value is automatically increased. default = 1.

diff_ylim Y-axis limits for profile difference plot, default = ¢(-0.5, 0.5)

Value

A ggplot2 object

54 plot_compare_profiles

See Also

plot_compare_profiles, plot_compare_dbs, plot_compare_indels
Other MBS: count_mbs_contexts(), plot_mbs_contexts()

Examples

Get the mbs counts

See 'count_mbs_contexts()' for more info on how to do this.

mbs_counts <- readRDS(system.file("states/blood_mbs_counts.rds”,
package = "MutationalPatterns”

)

You could compare regular mutation profiles with eachother.
plot_compare_mbs(

mbs_counts[, 1],

mbs_counts[, 2]

)

Or change the names of the profiles
plot_compare_mbs(mbs_counts[, 117,

mbs_counts[, 2],

profile_names = c("Original”, "Reconstructed")

)

You can also change the y limits.
This can be done separately for the profiles and the different facets.
plot_compare_mbs(mbs_counts[, 117,
mbs_counts[, 2],
profile_ymax = 0.9,
diff_ylim = c(-0.8, 0.8)
)

You could also compare a reconstructed profile.
However, the example data does not contain enough MBS variants to use NMF.
Existing signatures have also not yet been defined.

plot_compare_profiles Compare two 96 mutation profiles

Description

Plots two 96 mutation profiles and their difference, reports the residual sum of squares (RSS).

Usage

plot_compare_profiles(
profilel,
profile2,

plot_compare_profiles 55

profile_names = c("profile 1", "profile 2"),
profile_ymax = 0.2,
diff_ylim = c(-0.02, 0.02),

colors = NA,
condensed = FALSE

)

Arguments
profilel First 96 mutation profile
profile2 Second 96 mutation profile

profile_names Character vector with names of the mutations profiles used for plotting, default
= c("profile 1", "profile 2")

profile_ymax Maximum value of y-axis (relative contribution) for profile plotting. This can
only be used to increase the y axis. If bars fall outside this limit, the maximum
value is automatically increased. default = 0.2.

diff_ylim Y-axis limits for profile difference plot, default = ¢(-0.02, 0.02)
colors 6 value color vector
condensed More condensed plotting format. Default = F.

Value

96 spectrum plot of profile 1, profile 2 and their difference

See Also

mut_matrix, extract_signatures, plot_compare_indels, plot_compare_dbs, plot_compare_mbs

Examples

See the 'mut_matrix()' example for how we obtained the following
mutation matrix.
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,

package = "MutationalPatterns”

)

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res <- extract_signatures(mut_mat, rank = 2)

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns”

)

Compare the reconstructed 96-profile of sample 1 with the original profile
The same thing could be done with a reconstructed profile from signature refitting.
plot_compare_profiles(mut_mat[, 17,

nmf_res$reconstructed[, 1],

profile_names = c("Original”, "Reconstructed”)

56 plot_contribution

)

You could also compare regular mutation profiles with eachother.
plot_compare_profiles(

mut_mat[, 117,

mut_mat[, 2]
)

You can also change the y limits.
This can be done separately for the profiles and the different facets.
plot_compare_profiles(mut_mat[, 117,
mut_mat[, 2],
profile_ymax = 0.3,
diff_ylim = c(-0.03, 0.03)
)

plot_contribution Plot signature contribution barplot

Description

Plot contribution of signatures. Can be used on both the results of a NMF and on the results of
signature refitting.

Usage

plot_contribution(
contribution,
signatures = NA,
index = NA,
coord_flip = FALSE,
mode = c("relative”, "absolute"),
palette = NA

Arguments

contribution Signature contribution matrix

signatures Signature matrix. Necessary when plotting NMF results in "absolute" mode. It’s
not necessary in relative mode or when visualizing signature refitting results

index optional sample subset parameter

coord_flip Flip X and Y coordinates, default = FALSE

mode "relative” or "absolute"; to plot the relative contribution or absolute number of
mutations, default = "relative"

palette A color palette like c("#FF0000", "#00FF00", "9999CC") that will be used as

colors in the plot. By default, ggplot2’s colors are used to generate a palette.

plot_contribution 57

Value

Stacked barplot with contribution of each signature for each sample

See Also

extract_signatures, mut_matrix

Examples

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res <- extract_signatures(mut_mat, rank = 2)

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",

package = "MutationalPatterns”
)
Optionally set column and row names.
colnames(nmf_res$signatures) <- c("Signature A", "Signature B")
rownames (nmf_res$contribution) <- c("Signature A", "Signature B")

Plot the relative contribution
plot_contribution(nmf_res$contribution)

Plot the absolute contribution.
When plotting absolute NMF results, the signatures need to be included.
plot_contribution(nmf_res$contribution,

nmf_res$signature,

mode = "absolute”

Only plot a subset of samples
plot_contribution(nmf_res$contribution,
nmf_res$signature,
mode = "absolute”,
index = c(1, 2)
)
Flip the coordinates
plot_contribution(nmf_res$contribution,
nmf_res$signature,
mode = "absolute”,
coord_flip = TRUE
)

You can also use the results of signature refitting.

Here we load some data as an example

fit_res <- readRDS(system.file("states/snv_refit.rds",
package = "MutationalPatterns”

)

plot_contribution(fit_res$contribution)

58

Or again in absolute mode
plot_contribution(fit_res$contribution,
mode = "absolute”

)

plot_contribution_heatmap

plot_contribution_heatmap
Plot signature contribution heatmap

Description

Plot relative contribution of signatures in a heatmap

Usage

plot_contribution_heatmap(
contribution,
sig_order = NA,
sample_order = NA,
cluster_samples = TRUE,
cluster_sigs = FALSE,

method = "complete”,
plot_values = FALSE
)
Arguments
contribution Signature contribution matrix
sig_order

tional.

sample_order
tional.
cluster_samples

Character vector with the desired order of the signature names for plotting. Op-

Character vector with the desired order of the sample names for plotting. Op-

Hierarchically cluster samples based on euclidean distance. Default = T.

cluster_sigs

method

plot_values

Value

Hierarchically cluster sigs based on euclidean distance. Default = T.

The agglomeration method to be used for hierarchical clustering. This should
be one of "ward.D", "ward.D2", "single", "complete”, "average" (= UPGMA),
"mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
Default = "complete".

Plot relative contribution values in heatmap. Default = F.

Heatmap with relative contribution of each signature for each sample

plot_correlation_bootstrap 59

See Also

extract_signatures, mut_matrix, plot_contribution, plot_cosine_heatmap

Examples

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res <- extract_signatures(mut_mat, rank = 2)

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns”

)

Set signature names as row names in the contribution matrix
rownames (nmf_res$contribution) <- c("Signature A", "Signature B")

Plot with clustering.
plot_contribution_heatmap(nmf_res$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)

Define signature and sample order for plotting. If you have a mutation or signature
matrix, then this can be done like in the example of 'plot_cosine_heatmap()'

sig_order <- c("Signature B", "Signature A")

sample_order <- c(
"colonl”, "colon2", "colon3", "intestinel”, "intestine2"”,
"intestine3”, "liver3"”, "liver2"”, "liver1”

)

plot_contribution_heatmap(nmf_res$contribution,
cluster_samples = FALSE,
sig_order = sig_order, sample_order = sample_order

)

It's also possible to create a contribution heatmap with text values
output_text <- plot_contribution_heatmap(nmf_res$contribution, plot_values = TRUE)

This function can also be used on the result of a signature refitting analysis.
Here we load a existing result as an example.
snv_refit <- readRDS(system.file("states/strict_snv_refit.rds",
package = "MutationalPatterns”
)

plot_contribution_heatmap(snv_refit$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)

plot_correlation_bootstrap
Plots the correlation between bootstrapped signature contributions

Description

This function plots the pearson correlation between signatures. This can be done per sample or for
all samples together. It returns a list of the created figures.

60 plot_cosine_heatmap

Usage

plot_correlation_bootstrap(contri_boots, per_sample = TRUE)

Arguments

contri_boots A dataframe with bootstrapped signature contributions.

per_sample Whether or not a plot should be made per sample. Default: TRUE.

Value

A list of ggplot2 objects if run per sample. Else it returns a single ggplot2 object.

Examples

Get a dataframe with bootstrapped signature contributions.

See 'fit_to_signatures_bootstrapped()' for how to do this.

contri_boots <- readRDS(system.file("states/bootstrapped_snv_refit.rds",
package = "MutationalPatterns”

)

Plot the correlations between signatures per sample
fig_l <- plot_correlation_bootstrap(contri_boots)

Look at the figure of the first sample.
fig 1[[11]

You can also look at the correlation for all samples combined
plot_correlation_bootstrap(contri_boots, per_sample = FALSE)

plot_cosine_heatmap Plot cosine similarity heatmap

Description

Plot pairwise cosine similarities in a heatmap.

Usage

plot_cosine_heatmap(

cos_sim_matrix,
col_order = NA,
row_order = NA,
cluster_rows = TRUE,
cluster_cols = FALSE,
method = "complete”,
plot_values = FALSE

plot_cosine_heatmap 61

Arguments

cos_sim_matrix Matrix with pairwise cosine similarities. Result from cos_sim_matrix

col_order Character vector with the desired order of the columns names for plotting. Op-
tional.
row_order Character vector with the desired order of the row names for plotting. Optional.

cluster_rows Hierarchically cluster rows based on euclidean distance. Default = TRUE.
cluster_cols Hierarchically cluster cols based on euclidean distance. Default = FALSE.

method The agglomeration method to be used for hierarchical clustering. This should
be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA),
"mequitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
Default = "complete".

plot_values Plot cosine similarity values in heatmap. Default = FALSE.

Value

Heatmap with cosine similarities

See Also

mut_matrix, cos_sim_matrix

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Get signatures
signatures <- get_known_signatures()

Calculate the cosine similarity between each signature and each 96 mutational profile
cos_matrix <- cos_sim_matrix(mut_mat, signatures)

Plot the cosine similarity between each signature and each sample with hierarchical
clustering of samples and signatures.
plot_cosine_heatmap(cos_matrix, cluster_rows = TRUE, cluster_cols = TRUE)

In the above example, clustering is performed on the similarities of the samples with

the signatures. It's also possible to cluster the signatures and samples on their (96) profile.
This will generally give better results

If you use the same signatures for different analyses,

then their order will also be consistent.

hclust_cosmic <- cluster_signatures(signatures, method = "average")
cosmic_order <- colnames(signatures)[hclust_cosmic$order]
hclust_samples <- cluster_signatures(mut_mat, method = "average")

sample_order <- colnames(mut_mat)[hclust_samples$order]
Plot the cosine heatmap using this given signature order.

62 plot_dbs_contexts

plot_cosine_heatmap(cos_matrix,
cluster_rows = FALSE, cluster_cols = FALSE,
row_order = sample_order, col_order = cosmic_order

)

You can also plot the similarity of samples with eachother
cos_matrix <- cos_sim_matrix(mut_mat, mut_mat)
plot_cosine_heatmap(cos_matrix, cluster_rows = TRUE, cluster_cols = TRUE)

It's also possible to add the actual values in the heatmap.
plot_cosine_heatmap(cos_matrix, cluster_rows = TRUE, cluster_cols = TRUE, plot_values = TRUE)

plot_dbs_contexts Plot the DBS contexts

Description

Plot the DBS contexts

Usage

plot_dbs_contexts(counts, same_y = FALSE, condensed = FALSE)

Arguments
counts A tibble containing the number of DBS per COSMIC context.
same_y A boolean describing whether the same y axis should be used for all samples.
condensed More condensed plotting format. Default = F.

Details

Plots the number of DBS COSMIC context per sample. It takes a tibble with counts as its input.
This tibble can be generated by count_dbs_contexts Each sample is plotted in a separate facet. The
same y axis can be used for all samples or a separate y axis can be used.

Value

A ggplot figure.

See Also

count_dbs_contexts, plot_main_dbs_contexts

Other DBS: count_dbs_contexts(), get_dbs_context(), plot_compare_dbs(), plot_main_dbs_contexts()

plot_enrichment_depletion 63

Examples

Get The DBS counts

See 'count_dbs_contexts()' for more info on how to do this.

dbs_counts <- readRDS(system.file("states/blood_dbs_counts.rds”,
package = "MutationalPatterns”

)

Plot contexts
plot_dbs_contexts(dbs_counts)

Use the same y axis for all samples.
plot_dbs_contexts(dbs_counts, same_y = TRUE)

Create a more condensed plot
plot_dbs_contexts(dbs_counts, condensed = TRUE)

plot_enrichment_depletion
Plot enrichment/depletion of mutations in genomic regions

Description

Plot enrichment/depletion of mutations in genomic regions

Usage

plot_enrichment_depletion(df, sig_type = c("fdr"”, "p"))

Arguments
df Dataframe result from enrichment_depletion_test()
sig_type The type of significance to be used. Possible values: * *fdr’ False discovery rate.
A type of multiple testing correction.; * *p’ for regular p values.
Value

Plot with two parts. 1: Barplot with no. mutations expected and observed per region. 2: Effect size
of enrichment/depletion (log2ratio) with results significance test.

See Also

enrichment_depletion_test, genomic_distribution

64

Examples

See the 'genomic_distribution()' example for how we obtained the
following data:
distr <- readRDS(system.file("states/distr_data.rds”,

package = "MutationalPatterns”

))

tissue <- c(
"colon”, "colon”, "colon"”,
"intestine”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)

Perform the enrichment/depletion test.
distr_test <- enrichment_depletion_test(distr, by = tissue)

Plot the enrichment/depletion
plot_enrichment_depletion(distr_test)

#Perform and plot the enrichmet depletion test for all samples pooled
distr_test2 <- enrichment_depletion_test(distr)
plot_enrichment_depletion(distr_test2)

Plot with p values instead of fdr
plot_enrichment_depletion(distr_test, sig_type = "p")

Use multiple (max 3) significance cutoffs.
This will vary the number of significance stars.
distr_multistars <- enrichment_depletion_test(distr,
by = tissue,
p_cutoffs = c(0.05, 0.01, 0.005),
fdr_cutoffs = c(0.1, 0.05, 0.01)
)

plot_enrichment_depletion(distr_multistars)

plot_indel_contexts

plot_indel_contexts Plot the indel contexts

Description

Plot the indel contexts

Usage

plot_indel_contexts(
counts,
same_y = FALSE,
extra_labels = FALSE,
condensed = FALSE

plot_indel_contexts 65

Arguments
counts A tibble containing the number of indels per COSMIC context.
same_y A boolean describing whether the same y axis should be used for all samples.

extra_labels A boolean describing whether extra labels should be added. These can clarify
the plot, but will shift when different plot widths are used. We recommend
saving a plot with a width of 12, when using this argument.

condensed More condensed plotting format. Default = F.

Details

Plots the number of indels COSMIC context per sample. It takes a tibble with counts as its input.
This tibble can be generated by "count_indel_contexts()’. Each sample is plotted in a separate facet.
The same y axis can be used for all samples or a separate y axis can be used. The facets at the
top show the indel types. First the C and T deletions Then the C and T insertions. Next are the
multi base deletions and insertions. Finally the deletions with microhomology (mh) are shown. The
x-axis at the bottom shows the number of repeat units. For mh deletions the microhomology length
is shown.

Value

A ggplot figure.

See Also

count_indel_contexts, plot_main_indel_contexts

Other Indels: count_indel_contexts(), get_indel_context(), plot_compare_indels(), plot_main_indel_context:

Examples

Get The indel counts

See 'count_indel_contexts()' for more info on how to do this.

indel_counts <- readRDS(system.file("states/blood_indel_counts.rds",
package = "MutationalPatterns”

)

Plot contexts
plot_indel_contexts(indel_counts)

Use the same y axis for all samples.
plot_indel_contexts(indel_counts, same_y = TRUE)

Add extra labels to make plot clearer
plot_indel_contexts(indel_counts, extra_labels = TRUE)

Create a more condensed plot
plot_indel_contexts(indel_counts, condensed = TRUE)

66

plot_lesion_segregation

plot_lesion_segregation

Plot the strands of variants to show lesion segregation

Description

The strands of variants in a GRanges object is plotted. This way the presence of any lesion segrega-
tion is visualized. The function can plot either a single or multiple samples. Per chromosome, the
ratio of the mutations on the chromosomal strands is visualised by a line. The position of this line
is calculated as the mean of the "+" and "-" strand, where "+" equals 1 and "-" equals 0. In other
words: this line lies between the two strands if the mutations are equally distributed between them,

and approaches a strand if the majority of mutations on a chromosome lie on that strand.

Usage

plot_lesion_segregation(
vcf,
per_chrom = FALSE,
sample_name = NA,
min_muts_mean = 10,
chromosomes = NA,

subsample = NA
)
Arguments
vef GRanges or RGrangesList object.
per_chrom Boolean. Determines whether to create a separate plot per chromosome.

sample_name

min_muts_mean

Name of the sample. Is used as the title of the plot. Not very useful if you have
more than one sample.

Integer. The minimum of mutations, required for the mean strand of a chromo-
some to be calculated.

chromosomes Character vector. Determines chromosomes to be used and their order.
subsample Double between 0 and 1. Subsamples the amount of mutations to create a plot
with less dots. Such a plot is easier to modify in a vector program like illustrator.
(default: NA)
Value
ggplot2 object
See Also

calculate_lesion_segregation

Other Lesion_segregation: calculate_lesion_segregation()

plot_main_dbs_contexts 67

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

))

Plot lesion segregation
plot_lesion_segregation(grl[1:3])

Select a single GRanges object to plot.
gr <- grl[[1]]

Plot lesion segregation for a single sample.
Also add a title to the plot.
plot_lesion_segregation(gr, sample_name = "Colonl1")

Plot lesion segregation per chromosome.
We here store the results in a list.
figure_1 = plot_lesion_segregation(gr, per_chrom = TRUE, sample_name = "Colon1")

Plot specific chromosomes in a user specified order
plot_lesion_segregation(grl[1:3], chromosomes = c(2,3))

Subsample the mutations, so less points are plotted.
plot_lesion_segregation(grl[1:3], subsample = 0.2)

plot_main_dbs_contexts
Plot the main DBS contexts

Description

Plot the main DBS contexts

Usage

plot_main_dbs_contexts(counts, same_y = FALSE)

Arguments

counts A tibble containing the number of DBS per COSMIC context.

same_y A boolean describing whether the same y axis should be used for all samples.

68 plot_main_indel_contexts

Details

Plots the number of DBS per main COSMIC context per sample. The contexts are only divided
by REF and not by ALT. It takes a tibble with counts as its input. This tibble can be generated by
count_dbs_contexts Each sample is plotted in a separate facet. The same y axis can be used for all
samples or a separate y axis can be used.

Value

A ggplot figure.

See Also

count_dbs_contexts, plot_dbs_contexts

Other DBS: count_dbs_contexts(), get_dbs_context(), plot_compare_dbs(), plot_dbs_contexts()

Examples

Get The DBS counts

See 'count_dbs_contexts()' for more info on how to do this.

dbs_counts <- readRDS(system.file("states/blood_dbs_counts.rds"”,
package = "MutationalPatterns”

)

Plot contexts
plot_main_dbs_contexts(dbs_counts)

Use the same y axis for all samples.
plot_main_dbs_contexts(dbs_counts, same_y = TRUE)

plot_main_indel_contexts
Plot the main indel contexts

Description

Plot the main indel contexts

Usage

plot_main_indel_contexts(counts, same_y = FALSE)

Arguments

counts A tibble containing the number of indels per COSMIC context.

same_y A boolean describing whether the same y axis should be used for all samples.

plot_mbs_contexts 69

Details

Plots the number of indels per main COSMIC context per sample. The contexts are not subdivided
into the number of repeats/microhomology length. It takes a tibble with counts as its input. This
tibble can be generated by count_indel_contexts Each sample is plotted in a separate facet. The
same y axis can be used for all samples or a separate y axis can be used.

Value

A ggplot figure.

See Also

count_indel_contexts, plot_indel_contexts

Other Indels: count_indel_contexts(), get_indel_context(), plot_compare_indels(), plot_indel_contexts()

Examples

Get The indel counts

See 'count_indel_contexts()' for more info on how to do this.

indel_counts <- readRDS(system.file("states/blood_indel_counts.rds”,
package = "MutationalPatterns”

)

Plot contexts
plot_main_indel_contexts(indel_counts)

Use the same y axis for all samples.
plot_main_indel_contexts(indel_counts, same_y = TRUE)

plot_mbs_contexts Plot the MBS contexts

Description

Plot the MBS contexts

Usage

plot_mbs_contexts(counts, same_y = TRUE)

Arguments

counts A tibble containing the number of MBS per MBS length.

same_y A boolean describing whether the same y axis should be used for all samples.

70 plot_original_vs_reconstructed

Details

Plots the number of MBS per MBS length per sample. It takes a tibble with counts as its input.
This tibble can be generated by count_mbs_contexts Each sample is plotted in a separate facet. The
same y axis can be used for all samples or a separate y axis can be used.

Value

A ggplot figure.

See Also

count_mbs_contexts

Other MBS: count_mbs_contexts(), plot_compare_mbs()

Examples

Get The mbs counts

See 'count_mbs_contexts()' for more info on how to do this.

mbs_counts <- readRDS(system.file("states/blood_mbs_counts.rds”,
package = "MutationalPatterns”

)

Plot contexts
plot_mbs_contexts(mbs_counts)

Use a different y axis for all samples.
plot_mbs_contexts(mbs_counts, same_y = FALSE)

plot_original_vs_reconstructed
Plot the similarity between a mutation matrix and its reconstructed
profile

Description

When a reconstructed profile has a cosine similarity of more than 0.95 with original, the recon-
structed profile is considered very good.

Usage

plot_original_vs_reconstructed(
mut_matrix,
reconstructed,
y_intercept = 0.95,
ylims = c(0.6, 1)
)

plot_profile_heatmap 71

Arguments

mut_matrix mutation count matrix (dimensions: x mutation types X n samples)
reconstructed A reconstructed mutation count matrix

y_intercept The y intercept of the plotted horizontal line. Default: 0.95.

ylims The limits of the y axis. Default: ¢(0.6, 1)

Value

A ggplot figure

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

))

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res <- extract_signatures(mut_mat, rank = 2)

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns”

)

Create figure
plot_original_vs_reconstructed(mut_mat, nmf_res$reconstructed)

You can also use the results of signature refitting.

Here we load some data as an example

fit_res <- readRDS(system.file("states/snv_refit.rds",
package = "MutationalPatterns”

)

plot_original_vs_reconstructed(mut_mat, fit_res$reconstructed)

You can also change the height of the horizontal line
plot_original_vs_reconstructed(mut_mat, fit_res$reconstructed, y_intercept = 0.90)

It's also possible to change the limits of the y axis
plot_original_vs_reconstructed(mut_mat, fit_res$reconstructed, ylims = c(@, 1))

plot_profile_heatmap Plot a mutation matrix as a heatmap

Description

Function to plot a SNV mutation matrix as a heatmap. This is especially useful when looking at a
wide mutational context.

72 plot_profile_heatmap

Usage

plot_profile_heatmap(mut_matrix, by = NA, max = 0.02, condensed = FALSE)

Arguments
mut_matrix Matrix containing mutation counts.
by Optional grouping variable
max Maximum value used for plotting the relative contributions. Contributions that
are higher will have the maximum colour. (Default: 0.02)
condensed More condensed plotting format. Default = F.
Value
A ggplot object
See Also

mut_matrix, plot_96_profile, plot_river

Examples

See the 'mut_matrix()' examples for how we obtained the

mutation matrix information:

Get regular matrix

mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Create heatmap of profile
plot_profile_heatmap(mut_mat, max = 0.1)

Get extended matrix
mut_mat_extended <- readRDS(system.file("”states/mut_mat_data_extended.rds",
package = "MutationalPatterns”

)

Create heatmap of extended profile
plot_profile_heatmap(mut_mat_extended)

Or plot heatmap per tissue
tissue <- c(

"colon”, "colon", "colon”,
"intestine"”, "intestine”, "intestine”,
"liver"”, "liver", "liver"

)
plot_profile_heatmap(mut_mat_extended, by = tissue)

Or plot the heatmap per sample.
plot_profile_heatmap(mut_mat_extended,

plot_profile_region 73
by = colnames(mut_mat_extended),

max = 0.05

Create a condensed heatmap of extended profile
plot_profile_heatmap(mut_mat_extended, condensed = TRUE)

plot_profile_region Plot 96 trinucleotide profile per subgroup

Description
Plot relative contribution of 96 trinucleotides per subgroup. This can be genomic regions but could
also be other subsets. The function uses a matrix generated by ’lengthen_mut_matrix()’ as its input.
Usage

plot_profile_region(
mut_matrix,

mode = c("relative_sample”, "relative_sample_feature”, "absolute"),
colors = NULL,
ymax = 0.2,
condensed = FALSE
)
Arguments
mut_matrix Mutation matrix
mode ‘relative_sample’, 'relative_sample_feature’ or *absolute’ When ’relative_sample’,
the number of variants will be shown divided by the total number of variants in
that sample. When ’relative_sample_feature’, the number of variants will be
shown divided by the total number of variants in that sample. and genomic
region.
colors 6 value color vector
ymax Y axis maximum value, default = 0.2
condensed More condensed plotting format. Default = FALSE.
Value

96 trinucleotide profile plot per region

See Also

mut_matrix

Other genomic_regions: bin_mutation_density(), lengthen_mut_matrix(), plot_spectrum_region(),
split_muts_region()

74 plot_rainfall

Examples

See the 'lengthen_mut_matrix()' example for how we obtained the

mutation matrix information:

mut_mat_long <- readRDS(system.file("states/mut_mat_longregions.rds”,
package = "MutationalPatterns”

))

Plot the 96-profile of three samples
plot_profile_region(mut_mat_long[, c(1, 4, 7)1)

plot_rainfall Plot genomic rainfall

Description

Rainfall plot visualizes the types of mutations and intermutation distance

Usage
plot_rainfall(
vcf,
chromosomes,
title = "",
colors = NA,
cex = 2.5,
cex_text = 3,
ylim = 1e+08,
type = c(”"snv", "indel”, "dbs”, "mbs”)
)
Arguments
vef GRanges object
chromosomes Vector of chromosome/contig names of the reference genome to be plotted
title Optional plot title
colors Vector of 6 colors used for plotting
cex Point size
cex_text Text size
ylim Maximum y value (genomic distance)
type The mutation type of the GRanges object that will be used. Possible values: *

’snv’ (default) * *indel’ * ’dbs’ * *mbs’

plot_rainfall 75

Details

Rainfall plots can be used to visualize the distribution of mutations along the genome or a subset of
chromosomes. The distance of a mutation with the mutation prior to it (the intermutation distance)
is plotted on the y-axis on a log scale. The input GRanges are sorted before plotting.

The colour of the points indicates the base substitution type. Clusters of mutations with lower
intermutation distance represent mutation hotspots.

Value

Rainfall plot

See Also

read_vcfs_as_granges

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Specify chromosomes of interest.
chromosomes <- names(genome(vcfs[[1]1)[1:22])

Do a rainfall plot for all chromosomes:
plot_rainfall(vcfs[[1]1],

title = names(vcfs[1]),

chromosomes = chromosomes,

cex =1

)

Or for a single chromosome (chromosome 1):
plot_rainfall(vcfs[[11],

title = names(vcfs[1]),

chromosomes = chromosomes[1],

cex = 2

)

You can also use other variant types

Get a GRangeslList or GRanges object with indel contexts.

See 'indel_get_context' for more info on how to do this.

grl_indel_context <- readRDS(system.file("states/blood_grl_indel_context.rds",
package = "MutationalPatterns”

))

plot_rainfall(grl_indel_context[[1]],
title = "Indel rainfall”,
chromosomes,

76 plot_regional_similarity

type = "indel”
)

plot_regional_similarity
Plot regional similarity

Description

Plot the cosine similarity of the mutation profiles of small genomic windows with the rest of the
genome.

Usage

plot_regional_similarity(
region_cossim,
per_chrom = FALSE,
oligo_correction = TRUE,
max_cossim = NA,
title = NA,
plot_rug = FALSE,
x_axis_breaks = NA

Arguments

region_cossim A region_cossim object.

per_chrom Boolean. Determines whether to create a separate plot per chromosome. (De-
fault: FALSE)

oligo_correction
Boolean describing whether the oligonucleotide frequency corrected cosine sim-
ilarities should be plotted. If no correction has been applied then the regular
cosine similarities will be plotted. (Default: TRUE)

max_cossim Maximum cosine similarity for a window to be considered an outlier. Any win-
dow with a lower cosine similarity is given a different color. (Default: NA)

title Optional plot title. (Default: NA). When the default option is used, the number
of mutations per window and the step size are shown.

plot_rug Add a bottom rug to the plot, depicting the location of the mutations. (Default:
FALSE)

x_axis_breaks Vector of custom x-axis breaks. (Default: NA)

plot_regional_similarity 77

Details

Each dot shows the cosine similarity between the mutation profiles of a single window and the
rest of the genome. A region with a different mutation profile will have a lower cosine similarity.
The dots are colored based on the sizes in mega bases of the windows. This size is the distance
between the first and last mutations in a window. The locations of the mutations can be plotted on
the bottom of the figure. The cosine similarity can be plotted both with and without oligonucleotide
frequency correction. This can be done for all chromosomes at once or separate plots can be made
per chromosome.

Value

ggplot2 object

See Also

determine_regional_similarity

Other regional_similarity: determine_regional_similarity()

Examples

See the 'determine_regional_similarity()' example for how we obtained the
following data:
regional_sims <- readRDS(system.file("states/regional_sims.rds",

package = "MutationalPatterns”

)

Plot the regional similarity
plot_regional_similarity(regional_sims)

Plot outlier samples with a different color.

The value of 0.5 that is used here is arbitrarily chosen
and should in practice be based on the data.
plot_regional_similarity(regional_sims, max_cossim = 0.5)

Plot samples per chromosome
fig_1 = plot_regional_similarity(regional_sims, per_chrom = TRUE)

Plot without a title
plot_regional_similarity(regional_sims, title = "")

Add a rug to the plot, that shows the location of the mutations.
plot_regional_similarity(regional_sims, plot_rug = FALSE)

Use custom x axis breaks
plot_regional_similarity(regional_sims, x_axis_breaks = c(50, 150))

78 plot_river

plot_river Plot a riverplot

Description
Function to plot a SNV mutation matrix as a riverplot. This is especially useful when looking at a
wide mutational context

Usage

plot_river(mut_matrix, condensed = FALSE)

Arguments

mut_matrix Matrix containing mutation counts.

condensed More condensed plotting format. Default = F.

Value

A ggplot object

See Also

mut_matrix, plot_96_profile, plot_profile_heatmap

Examples

See the 'mut_matrix()' examples for how we obtained the

mutation matrix information:

Get regular matrix

mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

)

Create heatmap of profile
plot_river(mut_mat[,c(1,4)]1)

Get extended matrix
mut_mat_extended <- readRDS(system.file("”states/mut_mat_data_extended.rds",
package = "MutationalPatterns”

)

Create heatmap of extended profile
plot_river(mut_mat_extended[,c(1,4)])

Create condensed version of riverplot
plot_river(mut_mat_extended[,c(1,4)], condensed = TRUE)

plot_signature_strand_bias

79

plot_signature_strand_bias
Plot signature strand bias

Description

Plot strand bias per mutation type for each signature.

Usage

plot_signature_strand_bias(signatures_strand_bias)

Arguments

signatures_strand_bias
Signature matrix with 192 features

Value

Barplot

See Also

link{extract_signatures}, link{mut_matrix}

Examples

See the 'mut_matrix()' example for how we obtained the following

mutation matrix.

mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,
package = "MutationalPatterns”

)

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res_strand <- extract_signatures(mut_mat_s, rank = 2)

nmf_res_strand <- readRDS(system.file("states/nmf_res_strand_data.rds"”,
package = "MutationalPatterns”

)

Provide column names for the plot.
colnames(nmf_res_strand$signatures) <- c("Signature A", "Signature B")

Creat figure
plot_signature_strand_bias(nmf_res_strand$signatures)

You can also plot the bias of samples
plot_signature_strand_bias(mut_mat_s[, c(1, 2)1)

80

plot_spectrum

plot_spectrum

Plot point mutation spectrum

Description

Plot point mutation spectrum

Usage

plot_spectrum(

type_occurrences,

CT = FALSE,

by = NA,

indv_points = FALSE,
error_bars = c("95%_CI", "stdev"”, "SEM", "none"),

colors = NA,

legend = TRUE,
condensed = FALSE

Arguments

type_occurrences

CT

by
indv_points

error_bars

colors
legend

condensed

Value

Spectrum plot

See Also

Type occurrences matrix

Distinction between C>T at CpG and C>T at other sites, default = FALSE
Optional grouping variable

Whether to plot the individual samples as points, default = FALSE

The type of error bars to plot. * 95 * ’stdev’ for standard deviations; * *SEM’
for the standard error of the mean (NOT recommended); * *none’ Do not plot
any error bars;

Optional color vector with 7 values
Plot legend, default = TRUE

More condensed plotting format. Default = F.

read_vcfs_as_granges, mut_type_occurrences

plot_spectrum 81

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load a reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get the type occurrences for all VCF objects.
type_occurrences <- mut_type_occurrences(vcfs, ref_genome)

Plot the point mutation spectrum over all samples
plot_spectrum(type_occurrences)

Or with distinction of C>T at CpG sites
plot_spectrum(type_occurrences, CT = TRUE)

You can also include individual sample points.
plot_spectrum(type_occurrences, CT = TRUE, indv_points = TRUE)

You can also change the type of error bars
plot_spectrum(type_occurrences, error_bars = "stdev")

Or plot spectrum per tissue
tissue <- c(

"colon”, "colon", "colon”,
"intestine”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)
plot_spectrum(type_occurrences, by = tissue, CT = TRUE)

Or plot the spectrum per sample. Error bars are set to 'none', because they can't be plotted.
plot_spectrum(type_occurrences, by = names(vcfs), CT = TRUE, error_bars = "none")

Plot it in a more condensed manner,
which is is ideal for publications.
plot_spectrum(type_occurrences,

by = names(vcfs),

CT = TRUE,

error_bars = "none”,

condensed = TRUE)

You can also set custom colors.
my_colors <- c(
"pink”, "orange", "blue", "lightblue”,
"green”, "red", "purple”

)

82 plot_spectrum_region

And use them in a plot.
plot_spectrum(type_occurrences,
CT = TRUE,
legend = TRUE,
colors = my_colors

plot_spectrum_region Plot point mutation spectrum per genomic region

Description

A spectrum similar to the one from ’plot_spectrum()’ is plotted. However the spectrum is plotted
separately per genomic region. As input it takes a "type_occurrences’ matrix that was calculated per
genomic region. To get a ’type_occurrences’ matrix per region, first use the ’split_muts_region()’
function on a GR or GRangesList. Then use the 'mut_type_occurrences’ as you would normally.
The by, colors and legend argument work the same as in ’plot_spectrum()’.

Usage

plot_spectrum_region(
type_occurrences,
by = NA,
mode = c("relative_sample_feature”, "relative_sample”, "absolute"),
indv_points = FALSE,
error_bars = c("95%_CI", "stdev", "SEM", "none"),
colors = NULL,
legend = TRUE,
condensed = FALSE

Arguments

type_occurrences
Type occurrences matrix

by Optional grouping variable

mode The y-axis plotting mode. * ’relative_sample’, the number of variants will be
shown divided by the total number of variants in that sample; * ‘relative_sample_feature’,
the number of variants will be shown divided by the total number of variants in
that sample and genomic region (Default); * *absolute’ The absolute number of
mutations is shown;

indv_points Whether to plot the individual samples as points, default = FALSE

error_bars The type of error bars to plot. * *95 * ’stdev’ for standard deviations; * *SEM’
for the standard error of the mean (NOT recommended); * *none’ Do not plot
any error bars;

plot_spectrum_region 83

colors Optional color vector with 7 values

legend Plot legend, default = TRUE

condensed More condensed plotting format. Default = F.
Details

The y-axis can be plotted with three different modes. With ’relative_sample_feature’, the number
of variants will be shown divided by the total number of variants in that sample and genomic region.
This is generally the most useful, because it allows you to compare the spectra off different regions.
When you use ’relative_sample’, the number of variants will be shown divided by the total number
of variants in that sample. This can be useful when you want to compare the number of mutations
between regions. Finally, when you use ’absolute’, the absolute mutation numbers are shown. This
can be useful when you want to compare the mutation load between different groups of samples.

Value

Spectrum plot by genomic region

See Also

read_vcfs_as_granges, mut_type_occurrences, plot_spectrum, split_muts_region

Other genomic_regions: bin_mutation_density(), lengthen_mut_matrix(), plot_profile_region(),
split_muts_region()

Examples

See the 'split_muts_region()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/grl_split_region.rds",
package = "MutationalPatterns”

)

Load a reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get the type occurrences for all VCF objects.
type_occurrences <- mut_type_occurrences(grl, ref_genome)

Plot the relative point mutation spectrum per genomic region
plot_spectrum_region(type_occurrences)

Include the individual sample points
plot_spectrum_region(type_occurrences, indv_points = TRUE)

Plot the relative point mutation spectrum per genomic region,
but normalize only for the samples
plot_spectrum_region(type_occurrences, mode = "relative_sample”)

84

plot_strand

Plot the absolute point mutation spectrum per genomic region
plot_spectrum_region(type_occurrences, mode = "absolute"”)

Plot the point mutations spectrum with different error bars
plot_spectrum_region(type_occurrences, error_bars = "stdev")

Plot the relative point mutation spectrum per sample type and per genomic region
Determine tissue names
tissue <- c(

"colon"”, "colon”, "colon"”,
"intestine”, "intestine”, "intestine”,
"liver"”, "liver"”, "liver"”

)

plot_spectrum_region(type_occurrences, by = tissue)

Plot the relative point mutation spectrum per individual sample and per genomic region
Determine sample names
sample_names <- c(

"colonl”, "colon2", "colon3",
"intestinel”, "intestine2”, "intestine3",
"liver1”, "liver2", "liver3"
plot_spectrum_region(type_occurrences, by = sample_names, error_bars = "none")

Plot it in a more condensed manner,
which is is ideal for publications.
plot_spectrum_region(type_occurrences,
by = sample_names,

error_bars = "none”,

condensed = TRUE)

plot_strand Plot strand per base substitution type

Description

For each base substitution type and transcriptional strand the total number of mutations and the
relative contribution within a group is returned.

Usage

plot_strand(strand_bias_df, mode = c("relative”, "absolute"”), colors = NA)

Arguments

strand_bias_df data.frame, result from strand_bias function

plot_strand_bias 85

mode Either "absolute" for absolute number of mutations, or "relative" for relative
contribution, default = "relative"

colors Optional color vector for plotting with 6 values

Value

Barplot

See Also

mut_matrix_stranded, strand_occurrences, plot_strand_bias

Examples

See the 'mut_matrix_stranded()' example for how we obtained the

following mutation matrix.

mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,
package = "MutationalPatterns”

))
Load a reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"

library(ref_genome, character.only = TRUE)

tissue <- c(

"colon”, "colon”, "colon"”,
"intestine"”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)
strand_counts <- strand_occurrences(mut_mat_s, by = tissue)

Plot the strand in relative mode.
strand_plot <- plot_strand(strand_counts)

Or absolute mode.

strand_plot <- plot_strand(strand_counts, mode = "absolute”)
plot_strand_bias Plot strand bias per base substitution type per group
Description

Plot strand bias per base substitution type per group

Usage

plot_strand_bias(strand_bias, colors = NA, sig_type = c("fdr"”, "p"))

86 plot_strand_bias

Arguments
strand_bias data.frame, result from strand_bias function
colors Optional color vector with 6 values for plotting
sig_type The type of significance to be used. Possible values: * *fdr’ False discovery rate.
A type of multiple testing correction.; * *p’ for regular p values.
Value
Barplot
See Also

mut_matrix_stranded, strand_occurrences, strand_bias_test plot_strand

Examples

See the 'mut_matrix_stranded()' example for how we obtained the

following mutation matrix.

mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,
package = "MutationalPatterns”

)

tissue <- c(

"colon”, "colon”, "colon"”,
"intestine"”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)

Perform the strand bias test.
strand_counts <- strand_occurrences(mut_mat_s, by = tissue)
strand_bias <- strand_bias_test(strand_counts)

Plot the strand bias.
plot_strand_bias(strand_bias)

Use multiple (max 3) significance cutoffs.
This will vary the number of significance stars.
strand_bias_multistars <- strand_bias_test(strand_counts,
p_cutoffs = c(0.05, 0.01, 0.005),
fdr_cutoffs = c(0.1, 0.05, 0.01)
)

plot_strand_bias(strand_bias_multistars)

pool_mut_mat 87

pool_mut_mat Pool multiple samples from a mutation matrix together

Description

The mutation counts of columns (samples) are added up according to the grouping variable.

Usage

pool_mut_mat(mut_matrix, grouping)

Arguments
mut_matrix Mutation count matrix (dimensions: X mutation types X n samples)
grouping Grouping variable

Value

Mutation count matrix (dimensions: x mutation types X n groups)

Examples

See the 'mut_matrix()' example for how we obtained the mutation matrix:
mut_mat <- readRDS(system.file("states/mut_mat_data.rds"”,

package = "MutationalPatterns”
)
grouping <- c(rep(”colon”, 3), rep("intestine”, 3), rep("liver”, 3))
pool_mut_mat(mut_mat, grouping)

read_vcfs_as_granges Read VCF files into a GRangesList

Description

This function reads Variant Call Format (VCF) files into a GRanges object and combines them in
a GRangesList. In addition to loading the files, this function applies the same seqlevel style to the
GRanges objects as the reference genome passed in the *genome’ parameter. By default only reads
in snv variants.

88 read_vcfs_as_granges

Usage

read_vcfs_as_granges(
vcf_files,
sample_names,
genome,
group = c("auto+sex”, "auto”, "sex", "circular”, "all”, "none"),
type = c("snv"”, "indel”, "dbs", "mbs", "all"),
change_seqgnames = TRUE,
predefined_dbs_mbs = FALSE,
remove_duplicate_variants = TRUE

Arguments

vcf_files Character vector of VCF file names
sample_names Character vector of sample names
genome BSgenome reference genome object

group Selector for a seqlevel group. All seqlevels outside of this group will be re-
moved. Possible values: * ’all’ for all chromosomes; * ’auto’ for autosomal
chromosomes; * ’sex’ for sex chromosomes; * ’auto+sex’ for autosomal + sex
chromosomes (default); * ’circular’ for circular chromosomes; * none’ for no
filtering, which results in keeping all seqlevels from the VCF file.

type The mutation type that will be loaded. All other variants will be filtered out.
Possible values: * ’snv’ (default) * *indel’ * *dbs’ * *mbs’ * *all” When you use
"all’, no filtering or merging of variants is performed.

change_seqgnames

Boolean. Whether to change the seqlevelsStyle of the vcf to that of the BSgenome
object. (default = TRUE)

predefined_dbs_mbs
Boolean. Whether DBS and MBS variants have been predefined in your vcf.
This function by default assumes that DBS and MBS variants are present in the
vcfas SNVs, which are positioned next to each other. If your DBS/MBS variants
are called separately you should set this argument to TRUE. (default = FALSE)

remove_duplicate_variants
Boolean. Whether duplicate variants are removed. This is based on genomic
coordinates and does not take the alternative bases into account. It is gener-
ally recommended to keep this on. Turning this off can result in warnings in
plot_rainfall. When a duplicate SNV is identified as part of a DBS, only a single
DBS, instead of a duplicate DBS will be formed. (default = TRUE)

Value

A GRangesList containing the GRanges obtained from ’vcf_files’

region_cossim-class 89

Examples

The example data set consists of three colon samples, three intestine

samples and three liver samples. So, to map each file to its appropriate
sample name, we create a vector containing the sample names:

sample_names <- c(

"colonl1”, "colon2", "colon3",
"intestinel”, "intestine2"”, "intestine3",
"liver1”, "liver2", "liver3"”

)

We assemble a list of files we want to load. These files match the
sample names defined above.
vcf_files <- list.files(system.file("extdata"”,

package = "MutationalPatterns”
)’
pattern = "sample.vcf”, full.names = TRUE
)

Get a reference genome BSgenome object.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(”"BSgenome™)

library(ref_genome, character.only = TRUE)

This function loads the files as GRanges objects.
For backwards compatability reasons it only loads SNVs by default
vcfs <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome)

To load all variant types use:
vcfs <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome, type = "all")

Loading only indels can be done like this.

Select data containing indels.
vcf_fnames <- list.files(system.file("extdata”, package = "MutationalPatterns”),
pattern = "blood.xvcf"”, full.names = TRUE

)
sample_names <- c("AC", "ACC55", "BCH")

Read data and select only the indels.
Other mutation types can be read in the same way.
read_vcfs_as_granges(vcf_fnames, sample_names, ref_genome, type = "indel")

region_cossim-class An §4 class to store the results of a regional mutation pattern similarity
analysis

Description

An S4 class to store the results of a regional mutation pattern similarity analysis

90 rename_nmf_signatures

Slots

sim_tb A tibble containing the calculated similarities of the windows.
pos_tb A tibble containing the mutation positions.

chr_lengths Vector containing the chromosome lengths.

window_size The number of mutations in a window.

max_window_size_gen The maximum size of a window before it is removed.
ref_genome BSgenome reference genome object

muts_per_chr Vector containing the number of mutations per chromosome.
mean_window_size The mean length of the genome covered by the windows.
stepsize The number of mutations that a window slides in each step.

extension The number of bases, that’s extracted upstream and downstream of the base substitu-
tions, to create the mutation matrices.

chromosomes Vector of chromosome/contig names of the reference genome to be plotted.

exclude_self_mut_mat Boolean describing whether the mutations in a window should be sub-
tracted from the global mutation matrix.

rename_nmf_signatures Rename NMF signatures based on previously defined signatures

Description

This function renames signatures identified with NMF based on previously defined signatures. If a
NMF signature has a cosine similarity with a previously defined signature, that is higher than the
cutoff, then this NMF signature will get the name of the previously defined signature. If not the
NMF signature will receive a letter based name. For example: SBSA. This only changes the names
of signatures, not their actual values. This function can be help with identifying whether signatures
found with NMF are already known, which can be useful for interpretation. An extracted signature
that is not similar to any previously defined signatures, is not proof of a "novel" signature. The
extracted signature might be a combination of known signatures, that could not be split by NMF.
This can happen when, for example, too few samples were used for the NMF.

Usage

rename_nmf_signatures(
nmf_res,
signatures,
cutoff = 0.85,
base_name = "SBS",
suffix = "-like"

show,region_cossim-method 91

Arguments
nmf_res Named list of mutation matrix, signatures and signature contribution
signatures A signature matrix
cutoff Cutoff at which signatures are considered similar. Default: 0.85
base_name The base part of a letter based signature name. Default: "SBS"
suffix String. The suffix added to the name of a renamed signature. Default: "-like"
Value

A nmf_res with changed signature names

Examples

Extracting signatures can be computationally intensive, so
we use pre-computed data generated with the following command:
nmf_res <- extract_signatures(mut_mat, rank = 2)

nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns”

)

Get signatures
signatures <- get_known_signatures()

rename_nmf_signatures(nmf_res, signatures)

You can change or remove the suffix of the renamed signatures.
rename_nmf_signatures(nmf_res, signatures, suffix = "")

You can change how similar the signatures have to be, before they are considered similar.
rename_nmf_signatures(nmf_res, signatures, cutoff = 0.95)

You can also change the base_name of the signatures that end up with a letter name.
rename_nmf_signatures(nmf_res, signatures, cutoff = 0.95, base_name = "Signature_")

show, region_cossim-method
An 84 method to show an instance of the region_cossim class.

Description

An S4 method to show an instance of the region_cossim class.

Usage

S4 method for signature 'region_cossim'
show(object)

92

signature_potential_damage_analysis

Arguments

object A region_cossim object.

signature_potential_damage_analysis
Potential damage analysis for the supplied mutational signatures

Description

The ratio of possible ’stop gain’, 'mismatches’, ’synonymous mutations’ and ’splice site mutations’
is counted per signature. Normalized ratios are also given. These were calculated by dividing the
ratios in each signature, by the ratios of a completely "flat" signature. A normalized ratio of 2 for
"stop gain" mutations, means that a signature is twice as likely to cause "stop gain" mutations, com-
pared to a completely random "flat" signature. N is the number of possible mutations per context,
multiplied by the signature contribution per context, summed over all contexts. For mismatches the
blosum62 score is also calculated. A lower score means that the amino acids in the mismatches are
more dissimilar. More dissimilar amino acids are more likely to have a detrimental effect. Normal-
ized blosum62 scores are also given. These are calculated by substracting the score of a completely
"flat" signature from the base blosum62 scores.

Usage

signature_potential_damage_analysis(signatures, contexts, context_mismatches)

Arguments
signatures Matrix containing signatures
contexts Vector of mutational contexts to use for the analysis.

context_mismatches
A tibble with the ratio of ’stop gain’, 'mismatch’, ’synonymous’ and ’splice site’
mutations per mutation context.

Details

The function uses a tibble with the ratio of ’stop gain’, "'mismatch’, ’synonymous’ and ’splice site’
mutations per mutation context as its input. For each signature these ratios are linearly combined
based on the signature weights. They are then divided by a "flat" signature to get the normalized
ratios. The blosum62 scores are also linearly combined based on the signature weights.

Please take into account that this is a relatively basic analysis, that only looks at mutational contexts.
It does not take into account that signatures can be influenced by open/closed chromatin, strand
biases, hairpins or other epigenetic features. This analysis is meant to give an indication, not a
definitive answer, of how damaging a signature might be. Further analyses might be required,
especially when using signatures in a clinical context.

split_muts_region 93

Value

A tibble with the ratio of ’stop gain’, 'mismatch’, ’synonymous’ and ’splice site’ mutations per
signature.

Examples

Get the signatures
signatures <- get_known_signatures()

See the 'mut_matrix()' example for how we obtained the

mutation matrix information:

mut_mat <- readRDS(system.file("states/mut_mat_data.rds”,
package = "MutationalPatterns”

))
contexts <- rownames(mut_mat)

See the 'context_potential_damage_analysis()' example for how we obtained the

context_mismatches:

context_mismatches <- readRDS(system.file("states/context_mismatches.rds”,
package = "MutationalPatterns”

)

Determine the potential damage per signature
signature_potential_damage_analysis(signatures, contexts, context_mismatches)

split_muts_region Split GRangesList or GRanges based on a list of regions.

Description

A GRangesList or GRanges object containing variants is split based on a list of regions. This list
can be either a GRangesList or a GRanges object. The result is a GRangesList where each element
contains the variants of one sample from one region. Variant that are not in any of the provided
region are put in a list of "other’.

Usage

split_muts_region(vcf_list, ranges_grl, include_other = TRUE)

Arguments
vef_list GRangesList or GRanges object
ranges_grl GRangesList or GRanges object containing regions of interest

include_other Boolean. Whether or not to include a "Other" region containing mutations that
aren’t in any other region.

94 strand_bias_test

Value

GRangesList

See Also

Other genomic_regions: bin_mutation_density(), lengthen_mut_matrix(), plot_profile_region(),
plot_spectrum_region()

Examples

Read in some existing genomic regions.

See the 'genomic_distribution()' example for how we obtained the

following data:

CTCF_g <- readRDS(system.file("states/CTCF_g_data.rds",
package = "MutationalPatterns”

)

promoter_g <- readRDS(system.file("states/promoter_g_data.rds"”,
package = "MutationalPatterns”

))

flanking_g <- readRDS(system.file("states/promoter_flanking_g_data.rds",
package = "MutationalPatterns”

))

Combine the regions into a single GRangeslList
regions <- GRangeslList(promoter_g, flanking_g, CTCF_g)

names(regions) <- c("Promoter”, "Promoter flanking"”, "CTCF")

Read in some variants.

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

))

Split muts based on the supplied regions
split_muts_region(grl, regions)

Don't include muts outside of the supplied regions
split_muts_region(grl, regions, include_other = FALSE)

strand_bias_test Significance test for strand asymmetry

Description

This function performs a two sided Poisson test for the ratio between mutations on each strand.
Multiple testing correction is also performed.

strand_bias_test 95

Usage

strand_bias_test(strand_occurrences, p_cutoffs = 0.05, fdr_cutoffs = 0.1)

Arguments

strand_occurrences
Dataframe with mutation count per strand, result from ’strand_occurrences()’

p_cutoffs Significance cutoff for the p value. Default: 0.05
fdr_cutoffs Significance cutoff for the fdr. Default: 0.1

Value
Dataframe with poisson test P value for the ratio between the two strands per group per base substi-
tution type.

See Also

mut_matrix_stranded, strand_occurrences, plot_strand_bias

Examples

See the 'mut_matrix_stranded()' example for how we obtained the
following mutation matrix.
mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,

package = "MutationalPatterns”

))

tissue <- c(
"colon”, "colon", "colon”,
"intestine"”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)

Perform the strand bias test.
strand_counts <- strand_occurrences(mut_mat_s, by = tissue)
strand_bias <- strand_bias_test(strand_counts)

Use different significance cutoffs for the pvalue and fdr

strand_bias_strict <- strand_bias_test(strand_counts,
p_cutoffs = .01, fdr_cutoffs = 0.05

)

Use multiple (max 3) significance cutoffs.
This will vary the number of significance stars.
strand_bias_multistars <- strand_bias_test(strand_counts,
p_cutoffs = c(0.05, 0.01, 0.005),
fdr_cutoffs = c(0.1, 0.05, 0.01)

96 strand_occurrences

strand_occurrences Count occurrences per base substitution type and strand

Description
For each base substitution type and strand the total number of mutations and the relative contribution
within a group is returned.

Usage

strand_occurrences(mut_mat_s, by = NA)

Arguments
mut_mat_s 192 feature mutation count matrix, result from *mut_matrix_stranded()’
by Character vector with grouping info, optional

Value

A data.frame with the total number of mutations and relative contribution within group per base
substitution type and strand

See Also

mut_matrix_stranded, plot_strand, plot_strand_bias

Examples

See the 'mut_matrix_stranded()' example for how we obtained the

following mutation matrix.

mut_mat_s <- readRDS(system.file("states/mut_mat_s_data.rds”,
package = "MutationalPatterns”

)

Load a reference genome.

ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

tissue <- c(

"colon”, "colon”, "colon"”,
"intestine"”, "intestine”, "intestine”,
"liver"”, "liver", "liver”

)

strand_counts <- strand_occurrences(mut_mat_s, by = tissue)

type_context 97

type_context Retrieve context of base substitution types

Description

A function to extract the bases 3’ upstream and 5’ downstream of the base substitution types.

Usage

type_context(vcf, ref_genome, extension = 1)

Arguments
vef A CollapsedVCF object
ref_genome Reference genome
extension The number of bases, that’s extracted upstream and downstream of the base
substitutions. (Default: 1).
Value

Mutation types and context character vectors in a named list

See Also

read_vcfs_as_granges, mut_context

Examples

See the 'read_vcfs_as_granges()' example for how we obtained the

following data:

vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds”,
package = "MutationalPatterns”

)

Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)

Get type context
type_context <- type_context(vcfs[[1]], ref_genome)

Get larger type context
type_context_larger <- type_context(vcfs[[1]], ref_genome, extension = 2)

Index

*+ DBS
count_dbs_contexts, 13
get_dbs_context, 28
plot_compare_dbs, 50
plot_dbs_contexts, 62
plot_main_dbs_contexts, 67

+ Indels
count_indel_contexts, 14
get_indel_context, 29
plot_compare_indels, 51
plot_indel_contexts, 64
plot_main_indel_contexts, 68

* Lesion_segregation
calculate_lesion_segregation, 6
plot_lesion_segregation, 66

x+ MBS
count_mbs_contexts, 15
plot_compare_mbs, 53
plot_mbs_contexts, 69

* genomic_regions
bin_mutation_density, 5
lengthen_mut_matrix, 34
plot_profile_region, 73
plot_spectrum_region, 82
split_muts_region, 93

+ package
MutationalPatterns, 36

* regional_similarity
determine_regional_similarity, 16
plot_regional_similarity, 76

bin_mutation_density, 5, 35, 73, 83, 94
binomial_test, 4

calculate_lesion_segregation, 6, 66
cluster_signatures, 8
context_potential_damage_analysis, 9
convert_sigs_to_ref, 11

cos_sim, 12

cos_sim_matrix, 12, 61

count_dbs_contexts, 13, 28, 50, 62, 68
count_indel_contexts, 14, 29, 52, 65, 69
count_mbs_contexts, 15, 54, 70

determine_regional_similarity, 16, 77

enrichment_depletion_test, 18, 63

explained_by_signatures
(MutationalPatterns-defunct),
37

extract_signatures, 19, 47, 55, 57, 59

fit_to_signatures, 13,21,25

fit_to_signatures_bootstrapped, 21, 22,
23,25

fit_to_signatures_strict, 21, 23,24

genomic_distribution, 719,25, 63
get_dbs_context, 14, 28, 50, 62, 68
get_indel_context, 14, 29, 52, 65, 69
get_known_signatures, 30
get_mut_type, 28, 29, 32
get_sim_tb, 33
get_sim_tb,region_cossim-method
(get_sim_tb), 33

lengthen_mut_matrix, 5, 34, 73, 83, 94

merge_signatures, 35
mut_192_occurrences, 38
mut_96_occurrences, 39
mut_context, 39, 97
mut_matrix, 13, 20, 21, 23, 25, 40, 42, 48, 55,
57,59,61,72, 73,78
mut_matrix_stranded, 41, 47, 85, 86, 95, 96
mut_strand, 42, 43
mut_type, 45
mut_type_occurrences, 46, 80, 83
mutation_context
(MutationalPatterns-defunct),
37

INDEX

mutation_types
(MutationalPatterns-defunct),
37

MutationalPatterns, 36

MutationalPatterns-defunct, 37

MutationalPatterns-package
(MutationalPatterns), 36

mutations_from_vcf, 38

plot_192_profile, 47
plot_96_profile, 47,48, 72,78
plot_bootstrapped_contribution, 49

plot_compare_dbs, 14, 28, 50, 52, 54, 55, 62,

68

plot_compare_indels, 14, 29, 50, 51, 54, 55,

65, 69
plot_compare_mbs, 15, 50, 52, 53, 55, 70
plot_compare_profiles, 50, 52, 54, 54
plot_contribution, 56, 59
plot_contribution_heatmap, 8, 58
plot_correlation_bootstrap, 59
plot_cosine_heatmap, /3, 59, 60
plot_dbs_contexts, /4, 28, 50, 62, 68
plot_enrichment_depletion, /9, 63
plot_indel_contexts, 14, 29, 52, 64, 69
plot_lesion_segregation, 7, 66

plot_main_dbs_contexts, 14, 28, 50, 62, 67

plot_main_indel_contexts, 14, 29, 52, 65

68
plot_mbs_contexts, 15, 54, 69
plot_original_vs_reconstructed, 70
plot_profile_heatmap, 48, 71, 78
plot_profile_region, 5, 35, 73, 83, 94
plot_rainfall, 74
plot_regional_similarity, 17,76
plot_river, 48, 72,78
plot_signature_strand_bias, 79
plot_spectrum, 80, 83
plot_spectrum_region, 5, 35, 73, 82, 94
plot_strand, 84, 86, 96
plot_strand_bias, 85, 85, 95, 96
pool_mut_mat, 87

read_vcfs_as_granges, 26, 28, 29, 33, 38,
40-42, 4446, 75, 80, 83, 87, 97

region_cossim-class, 89

rename_nmf_signatures, 90

show, region_cossim-method, 91

99

signature_potential_damage_analysis,
92
split_muts_region, 5, 35,73, 83,93
strand_bias_test, 86, 94
strand_from_vcf
(MutationalPatterns-defunct),
37
strand_occurrences, 85, 86, 95, 96

type_context, 97

	binomial_test
	bin_mutation_density
	calculate_lesion_segregation
	cluster_signatures
	context_potential_damage_analysis
	convert_sigs_to_ref
	cos_sim
	cos_sim_matrix
	count_dbs_contexts
	count_indel_contexts
	count_mbs_contexts
	determine_regional_similarity
	enrichment_depletion_test
	extract_signatures
	fit_to_signatures
	fit_to_signatures_bootstrapped
	fit_to_signatures_strict
	genomic_distribution
	get_dbs_context
	get_indel_context
	get_known_signatures
	get_mut_type
	get_sim_tb
	lengthen_mut_matrix
	merge_signatures
	MutationalPatterns
	MutationalPatterns-defunct
	mutations_from_vcf
	mut_192_occurrences
	mut_96_occurrences
	mut_context
	mut_matrix
	mut_matrix_stranded
	mut_strand
	mut_type
	mut_type_occurrences
	plot_192_profile
	plot_96_profile
	plot_bootstrapped_contribution
	plot_compare_dbs
	plot_compare_indels
	plot_compare_mbs
	plot_compare_profiles
	plot_contribution
	plot_contribution_heatmap
	plot_correlation_bootstrap
	plot_cosine_heatmap
	plot_dbs_contexts
	plot_enrichment_depletion
	plot_indel_contexts
	plot_lesion_segregation
	plot_main_dbs_contexts
	plot_main_indel_contexts
	plot_mbs_contexts
	plot_original_vs_reconstructed
	plot_profile_heatmap
	plot_profile_region
	plot_rainfall
	plot_regional_similarity
	plot_river
	plot_signature_strand_bias
	plot_spectrum
	plot_spectrum_region
	plot_strand
	plot_strand_bias
	pool_mut_mat
	read_vcfs_as_granges
	region_cossim-class
	rename_nmf_signatures
	show,region_cossim-method
	signature_potential_damage_analysis
	split_muts_region
	strand_bias_test
	strand_occurrences
	type_context
	Index

