---
title: "Data Analyses"
author:
- Sean K. Maden
- Reid F. Thompson
- Kasper D. Hansen
- Abhinav Nellore
date: "`r format(Sys.time(), '%d %B, %Y')`"
bibliography: bibliography.bib
package: recountmethylation
vignette: > 
  %\VignetteIndexEntry{Data Analyses}
  %\VignetteDepends{RCurl}
  %\usepackage[UTF-8]{inputenc} 
  %\VignetteEncoding{UTF-8}
  %\VignetteEngine{knitr::rmarkdown}
output:
  BiocStyle::pdf_document:
    toc: yes
    toc_depth: 3
  BiocStyle::html_document:
    code_folding: show
    toc: yes
    tocfloat: yes
---

```{r setup, echo = FALSE}
suppressMessages(library(rhdf5))
suppressMessages(library(minfi))
suppressMessages(library(recountmethylation))
suppressMessages(library(knitr))
suppressMessages(library(ggplot2))
suppressMessages(library(gridExtra))
suppressMessages(library(GenomicRanges))
suppressMessages(library(limma))
suppressMessages(library(HDF5Array))
opts_chunk$set(eval = FALSE, echo = TRUE, 
               warning = FALSE, message = FALSE)
```

# Overview

This vignette walks through 3 analysis examples using data accessed with the 
`recountmethylation` package. First, predicted and chronological ages are 
compared from the sample metadata. Then quality signals  (methylated and 
unmethylated, log2 median scale) are compared between samples stored using 
either formalin fixed paraffin-embedding (FFPE) or freezing. Finally, 
tissue-specific probe sets with high DNA methylation (DNAm) fraction variances 
are identifed and analyzed using liver and adipose samples. Note that versions 
of these analyses also appear in the manuscript @maden_human_2020.

## Analysis script and limited chunk evaluation

This vignette accompanies the "data_analyses.R" script. Note the script was written with extensibility to new and larger comparator groups in mind. While the script should run 
to completion without errors, it takes several hours in total to complete (excluding 
the time to download large database files). Due to this lengthy script run time, 
this vignette only evaluates code chunks utilizing final/resultant data objects 
produced by the script (e.g. for tables, tests, and figures). For completeness, 
remaining script steps and code are included but not evaluated.

Load the file "data_analyses.RData" from the `recountmethylation` package files. 
This contains the resultant/final data objects produced by the script, which will 
be used in evaluated code chunks below.

```{r, eval = TRUE}
sf <- system.file(file.path("extdata", "data_analyses"), 
                  package = "recountmethylation")
load(file.path(sf, "data_analyses.RData"))
```

## Datasets and data objects

The analysis script uses sample metadata and 2 database files. Retrieve the provided sample metadata from the `recountmethylation` package files.

```{r, eval = TRUE}
# get local metadata
path <- system.file("extdata", "metadata", package = "recountmethylation")
mdpath <- paste(path, list.files(path)[1], sep = "/")
md <- get(load(mdpath))
```

Also obtain 2 `HDF5-SummarizedExperiment` database files, the 
GenomicRanges and MethylSet files. Consult the `users_guide` vignette for 
details about the database file formats and download instructions. Once the 
datasets downloaded, they can be loaded into an R session as follows.

```{r}
# load methylset
gmdn <- "remethdb-h5se_gm_0-0-1_1590090412"
gm <- loadHDF5SummarizedExperiment(gmdn)
# load grset
grdn <- "remethdb-h5se_gr_0-0-1_1590090412"
gr <- loadHDF5SummarizedExperiment(grdn)
```

# Example 1: Comparing mined and predicted age

This example uses sample metadata to compare mined and predicted ages from 
the `age` and `predage` variables, respectively. Values in `age` were mined 
from GEO record metadata and are included with available age units. Values in 
`predage` were calculated from noob-normalized (@triche_low-level_2013) DNAm 
Beta-values with `agep`, a function from the `wateRmelon` package that 
implements the Horvath biological age clock (@horvath_dna_2013).

## Make new variables and filter samples

Get samples for which both `age` and `predage` age are available. From `age`, 
make a new numeric variable `chron.age`.

```{r, eval = TRUE}
mdf <- md[!md$age == "valm:NA",]
mdf$chron.age <- as.numeric(gsub(";.*", "", gsub("^valm:", "", mdf$age)))
mdf$predage <- as.numeric(mdf$predage)
mdf <- mdf[!is.na(mdf$chron.age),]
mdf <- mdf[!is.na(mdf$predage),]
```

Next, make a new variable `stype` from `sampletype` and remove samples with 
missing values.

```{r, eval = TRUE}
mdf$stype <- as.character(gsub(";.*", "", 
  gsub("^msraptype:", "", mdf$sampletype)))
mdf <- mdf[!is.na(mdf$stype),]
```

Now make a new variable `is.cx` from querying `cancer` in the `disease` term. 
This reflects whether a sample was likely from a cancer or a cancer patient.

```{r, eval = TRUE}
mdf$is.cx <- ifelse(grepl(".*cancer.*", mdf$disease), TRUE, FALSE)
```

Next, store the study-wise age differences in the `xdif` variable using the 
mean absolute difference (a.k.a. "MAD") between `chron.age` and `predage` 
across samples from the same study. Also store study sizes in the `ngsm` term 
for plotting. 

```{r, eval = TRUE}
xdif <- ngsm <- c()
for(g in unique(mdf$gseid)){
    mdff <- mdf[mdf$gseid==g, ]
    xdif <- c(xdif, mean(abs(mdff$chron.age - as.numeric(mdff$predage))))
    ngsm <- c(ngsm, nrow(mdff))
}
names(xdif) <- names(ngsm) <- unique(mdf$gseid)
```

Make a new filtered `mdff` data frame using the new variables. Retain likely 
non-cancer samples from studies with MAD <= 10 years. Pre- and post-filter 
datasets (groups 1 and 2, respectively) are summarized below.

```{r, eval = TRUE}
filt <- mdf$stype == "tissue" & !mdf$is.cx
filt <- filt & !mdf$gseid %in% names(xdif[xdif > 10])
mdff <- mdf[filt, ]
```

## Analyses and summary statistics

Perform statistical analyses of `mdf` (group 1) and `mdff` (group 2). First, 
generate multiple regressions for each. 

```{r, eval = TRUE}
lm1 <- lm(mdf$predage ~ mdf$chron.age + mdf$gseid + mdf$stype + mdf$is.cx)
lm2 <- lm(mdff$predage ~ mdff$chron.age + mdff$gseid)
```

Now perform analyses of variances (ANOVAs) on multiple regressions. Summarize 
variance percentages and p-values for covariates in each model. Columns 
"Vperc" and "Pval" are the percent variance and unadjusted p-value for 
covariates in each model.

```{r, eval = TRUE}
# anovas
av1 <- anova(lm1)
av2 <- anova(lm2)
# results summaries
sperc1 <- round(100*av1$`Sum Sq`[1:4]/sum(av1$`Sum Sq`), 2)
pval1 <- format(av1$`Pr(>F)`[1:4], scientific = TRUE, digits = 3)
sperc2 <- round(100*av2$`Sum Sq`[1:2]/sum(av2$`Sum Sq`), 2)
pval2 <- format(av2$`Pr(>F)`[1:2], scientific = TRUE, digits = 3)
# summary table
dan <- data.frame(Vperc1 = c(sperc1), 
                  Pval1 = c(pval1),
                  Vperc2 = c(sperc2, "-", "-"), 
                  Pval2 = c(pval2, "-", "-"), 
                  stringsAsFactors = FALSE)
rownames(dan) <- c("Chron.Age", "GSEID", "SampleType", "Cancer")
knitr::kable(dan, align = "c")
```

Now calcualte the R-squared, Spearman correlation coefficient (Rho), and MAD 
for each model.

```{r, eval = TRUE}
# rsquared
rsq1 <- round(summary(lm1)$r.squared, 2)
rsq2 <- round(summary(lm2)$r.squared, 2)
# correlation coefficient
rho1 <- round(cor.test(mdf$predage, mdf$chron.age, 
                      method = "spearman")$estimate, 2)
rho2 <- round(cor.test(mdff$predage, mdff$chron.age, 
                       test = "spearman")$estimate, 2)
# mean absolute difference
mad1 <- round(mean(abs(mdf$chron.age - mdf$predage)), 2)
mad2 <- round(mean(abs(mdff$chron.age - mdff$predage)), 2)
```

Finally, organize and display the results

```{r, eval = TRUE}
dss <- data.frame(group = c("1", "2"),
                  ngsm = c(nrow(mdf), nrow(mdff)),
                  ngse = c(length(unique(mdf$gseid)), 
                    length(unique(mdff$gseid))),
                  r.squared = c(rsq1, rsq2), rho = as.character(c(rho1, rho2)),
                  mad = c(mad1, mad2), stringsAsFactors = FALSE)
knitr::kable(dss, align = "c")
```

## Scatter plots of study errors and sample ages

Plot sample counts and MAD for each GSE record, with a vertical line at the 
10-years MAD cutoff used for the group 2 filter.

```{r, eval = TRUE, fig.width = 3.8, fig.height = 3.4}
plot(xdif, ngsm, ylab = "Study Size (Num. GSM)", 
     xlab = "Age Difference, MAD[Chron, Pred]")
abline(v = 10, col = "red")
```

Finally, plot the chronological and predicted ages for group 2 samples.

```{r, eval = TRUE, fig.width = 3.4, fig.height = 3.1}
ggplot(mdff, aes(x = chron.age, y = predage)) +
  geom_point(size = 1.2, alpha = 0.2) + geom_smooth(method = "lm", size = 1.2) +
  theme_bw() + xlab("Chronological Age") + ylab("Epigenetic (DNAm) Age")
```

# Example 2: Signal comparison of FFPE and frozen samples

This section compares methylated and unmethylated signal (log2 sample median 
scale) between samples stored with either FFPE or fresh freezing (FF).

## Get samples with storage type information

Identify and summarize samples with the `storage` variable available. Use 
values in `storage` to inform a new `sgroup` variable.

```{r, eval = TRUE}
mdf <- md[!md$storage == "NA",]
mdf$sgroup <- ifelse(grepl("FFPE", mdf$storage), "ffpe", "frozen")
```
```{r}
# get summary table
sst <- get_sst(sgroup.labs = c("ffpe", "frozen"), mdf)
knitr::kable(sst, align = "c") # table display
```

## Use blocking to calculate signal log2 medians

Subset the `MethylSet` object and extract the full signal matrices with the 
`getMeth` and `getUnmeth` functions from the minfi package.

```{r}
gmf <- gm[, gm$gsm %in% mdf$gsm] # filt h5se object
mdf <- mdf[order(match(mdf$gsm, gmf$gsm)),]
identical(gmf$gsm, mdf$gsm)
gmf$storage <- mdf$storage # append storage info
```
```{r}
meth.all <- getMeth(gmf)
unmeth.all <- getUnmeth(gmf)
```

Next, prepare to calculate log2 median signals. To manage data in active 
memory, process it in smaller units or blocks. Using the `get_blocks` helper 
function, assign sample indices to blocks of size 1,000 using the `bsize` 
argument.

```{r}
blocks <- getblocks(slength = ncol(gmf), bsize = 1000)
```

Now calculate log2 of sample median signals for each block. Vectorize 
calculations within blocks with `apply`. Store results in the data.frame `ds`.

```{r}
ms <- matrix(nrow = 0, ncol = 2)
l2meth <- l2unmeth <- c()
for(i in 1:length(blocks)){
  b <- blocks[[i]]
  gmff <- gmf[, b]
  methb <- as.matrix(meth.all[, b])
  unmethb <- as.matrix(unmeth.all[, b])
  l2meth <- c(l2meth, apply(methb, 2, function(x){
    log2(median(as.numeric(x)))
  }))
  l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){
    log2(median(as.numeric(x)))
  }))
  ms <- rbind(ms, matrix(c(l2meth, l2unmeth), ncol = 2))
  message(i)
}
rownames(ms) <- colnames(meth.all)
colnames(ms) <- c("meth.l2med", "unmeth.l2med")
ds <- as.data.frame(ms)
ds$storage <- ifelse(grepl("FFPE", gmf$storage), "ffpe", "frozen")
```

## Signals plotted by storage type

Evaluate signal patterns across storage type using plots using the ggplot2 
package. First, make a 2d scatter plot of methylated and unmethylated signals 
using the `geom_point` function. Color by storage type with the 
`scale_color_manual` function (FFPE samples are orange, frozen samples are 
purple).

```{r, eval = TRUE, fig.width = 4.3, fig.height = 3.1}
ggplot(ds, aes(x = meth.l2med, y = unmeth.l2med, color = storage)) + 
  geom_point(alpha = 0.35, cex = 3) + theme_bw() +
  scale_color_manual(values = c("ffpe" = "orange", "frozen" = "purple"))
```

Next, make separate violin plots for signals and groups using the `geom_violin` 
function with the same colors for each storage type. Draw horizontal median 
lines by setting the `draw_quantiles` argument to 0.5.

```{r, eval = TRUE, fig.width = 4.5, fig.height = 2.5}
vp <- matrix(nrow = 0, ncol = 2)
vp <- rbind(vp, matrix(c(ds$meth.l2med, paste0("meth.", ds$storage)), 
  ncol = 2))
vp <- rbind(vp, matrix(c(ds$unmeth.l2med, paste0("unmeth.", ds$storage)), 
  ncol = 2))
vp <- as.data.frame(vp, stringsAsFactors = FALSE)
vp[,1] <- as.numeric(vp[,1])
colnames(vp) <- c("signal", "group")
vp$col <- ifelse(grepl("ffpe", vp$group), "orange", "purple")
# make plot
ggplot(vp, aes(x = group, y = signal, color = group)) + 
  scale_color_manual(values = c("meth.ffpe" = "orange", 
    "unmeth.ffpe" = "orange", "meth.frozen" = "purple", 
    "unmeth.frozen" = "purple")) +
  geom_violin(draw_quantiles = c(0.5)) + theme_bw() + 
    theme(legend.position = "none")
```

# Example 3: Identify and analyze tissue-specific probes with the highest 
variances

This example describes variance analyses in liver and adipose, 2 of the 7 
tissues analyzed in the manuscript @maden_human_2020. This includes a quality 
assessment, study ID linear adjustment of DNAm fractions, ANOVA-based and 
probe filtering, 2-step variance analyses, and results plots.

## Sample identification and summary

Summarize the samples of interest. Use two vectors of GSM IDs, `adipose.gsmv` 
and `liver.gsmv` to filter the metadata (see vectors in the data_analyses.R 
script). Also define tissues in the new group variable `sgroup`. Summarize the 
sample groups in a table

```{r, eval = TRUE}
gsmv <- c(adipose.gsmv, liver.gsmv)
mdf <- md[md$gsm %in% gsmv,]
mdf$sgroup <- ifelse(mdf$gsm %in% adipose.gsmv, "adipose", "liver")
sst.tvar <- get_sst(sgroup.labs = c("liver", "adipose"), mdf)
knitr::kable(sst.tvar, align = "c")
```

## Calculate log2 methylated and unmethylated signal medians

Subset the `MethylSet` dataset, then append the `sgroup` variable from `mdf` 
and map the object to the genome using the `mapToGenome` function from the 
`minfi` package.

```{r}
ms <- gm[,colnames(gm) %in% rownames(mdf)]
ms <- ms[,order(match(colnames(ms), rownames(mdf)))]
identical(colnames(ms), rownames(mdf))
# [1] TRUE
ms$sgroup <- mdf$sgroup
ms <- mapToGenome(ms)
dim(ms)
# [1] 485512    252
```

As in example 2 above, calculate the sample log2 median signals from signal 
matrices. Process the data in blocks using within-block vectorization with 
`apply`.

```{r}
# get log2 medians
meth.tx <- getMeth(ms)
unmeth.tx <- getUnmeth(ms)
blocks <- getblocks(slength = ncol(ms), bsize = 50)
# process data in blocks
l2m <- matrix(nrow = 0, ncol = 2)
for(i in 1:length(blocks)){
  b <- blocks[[i]]
  gmff <- ms[, b]
  methb <- as.matrix(meth.tx[, b])
  unmethb <- as.matrix(unmeth.tx[, b])
  l2meth <- l2unmeth <- c()
  l2meth <- c(l2meth, apply(methb, 2, function(x){
    log2(median(as.numeric(x)))
  }))
  l2unmeth <- c(l2unmeth, apply(unmethb, 2, function(x){
    log2(median(as.numeric(x)))
  }))
  l2m <- rbind(l2m, matrix(c(l2meth, l2unmeth), ncol = 2))
  message(i)
}
ds2 <- as.data.frame(l2m)
colnames(ds2) <- c("l2med.meth", "l2med.unmeth")
ds2$tissue <- as.factor(ms$sgroup)
```

Make a scatter plot of log2 median signals by tissue type with the `geom_point` 
function.

```{r, eval = TRUE, fig.width = 4.5, fig.height = 3.1}
ggplot(ds2, aes(x = l2med.meth, y = l2med.unmeth, color = tissue)) + 
  geom_point(alpha = 0.3, cex = 3) + theme_bw()
```

## Perform linear correction on DNAm for study IDs

Access the noob-normalized DNAm Beta-values from the `GenomicRatio` object `gr` 
loaded above. Extract the DNAm fractions as M-values (logit2 transformed 
Beta-values) with the `getM` minfi function. Perform linear correction on 
study ID with the `removeBatchEffect` function from the limma package by 
setting the `batch` argument to the "gseid" variable.

```{r}
lmv <- lgr <- lmd <- lb <- lan <- list()
tv <- c("adipose", "liver")
# get noob norm data
gr <- gr[,colnames(gr) %in% colnames(ms)]
gr <- gr[,order(match(colnames(gr), colnames(ms)))]
identical(colnames(gr), colnames(ms))
gr$sgroup <- ms$sgroup
# do study ID adj
for(t in tv){
  lmv[[t]] <- gr[, gr$sgroup == t]
  msi <- lmv[[t]]
  madj <- limma::removeBatchEffect(getM(msi), batch = msi$gseid)
  # store adjusted data in a new se object
  lgr[[t]] <- GenomicRatioSet(GenomicRanges::granges(msi), M = madj, 
                              annotation = annotation(msi))
  # append samples metadata
  lmd[[t]] <- pData(lgr[[t]]) <- pData(lmv[[t]])
  # append preprocessing metadata
  metadata(lgr[[t]]) <- list("preprocess" = "noobbeta;removeBatchEffect_gseid")
  # make betavals list
  lb[[t]] <- getBeta(lgr[[t]]) # beta values list
}
```

## Perform array-wide ANOVAs and filter probes

Prepare and run ANOVAs on autosomal probes. First, identify and remove sex 
chromosome probes by accessing annotation with the `getAnnotation` minfi 
function. List the filtered data in the `lbf` object.

```{r}
anno <- getAnnotation(gr)
chr.xy <-c("chrY", "chrX")
cg.xy <- rownames(anno[anno$chr %in% chr.xy,])
lbf <- list()
for(t in tv){
  bval <- lb[[t]]
  lbf[[t]] <- bval[!rownames(bval) %in% cg.xy,]
}
bv <- lbf[[1]]
```

Next, select and format the 9 model covariates for the ANOVA tests. From sample 
metadata, select the variables for study ID ("gseid"), predicted sex 
("predsex"), predicted age ("predage"), and predicted fractions of 6 cell types 
("predcell..*"). Convert these to either factor or numeric type with the 
functions `as.factor` and `as.numeric`, respectively.

```{r}
lvar <- list()
cnf <- c("gseid", "predsex", "predage", "predcell.CD8T",
         "predcell.CD4T", "predcell.NK", "predcell.Bcell",
         "predcell.Mono", "predcell.Gran")
for(t in tv){
  for(c in cnf){
    if(c %in% c("gseid", "predsex")){
      lvar[[t]][[c]] <- as.factor(pData(lgr[[t]])[,c])
    } else{
      lvar[[t]][[c]] <- as.numeric(pData(lgr[[t]])[,c])
    }
  }
}
```

Run ANOVAs on probe Beta-values. Use the blocking-with-vectorization strategy 
here as above, with large blocks of 100,000 sample indices each. Calculations 
should complete in about 1 hour. For each test, retain unadjusted p-values and 
variance percentages of the 9 covariates. Store the 18-column results matrices 
in the `lan` list object.

```{r}
bv <- lbf[[1]]
blocks <- getblocks(slength = nrow(bv), bsize = 100000)
mr <- matrix(nrow = 0, ncol = 18)
lan <- list("adipose" = mr, "liver" = mr)
t1 <- Sys.time()
for(bi in 1:length(blocks)){
  for(t in tv){
    datr <- lbf[[t]][blocks[[bi]],]
    tvar <- lvar[[t]]
    newchunk <- t(apply(datr, 1, function(x){
      # do multiple regression and anova
      x <- as.numeric(x)
      ld <- lm(x ~ tvar[[1]] + tvar[[2]] + tvar[[3]] + tvar[[4]] +
                 tvar[[5]] + tvar[[6]] + tvar[[7]] + tvar[[8]] + tvar[[9]])
      an <- anova(ld)
      # get results
      ap <- an[c(1:9),5] # pval
      av <- round(100*an[c(1:9),2]/sum(an[,2]), 3) # percent var
      return(as.numeric(c(ap, av)))
    }))
    # append new results
    lan[[t]] <- rbind(lan[[t]], newchunk)
  }
  message(bi, "tdif: ", Sys.time() - t1)
}
# append colnames
for(t in tv){colnames(lan[[t]]) <- rep(cnf, 2)}
```

Next, remove probes showing evidence of residual confounding from the 
covariates. Adjust covariate p-values with the `p.adjust` function, and retain 
probes with adjusted p-values >= 0.001 and variance < 10% variance for all 9 
covariates. Retain the filtered probe DNAm data as `GenomicRatioSet`s for each 
tissue in the list `lgr.filt`.

```{r}
pfilt <- 1e-3
varfilt <- 10
lcgkeep <- list() # list of filtered probe sets
for(t in tv){
  pm <- lan[[t]][,c(1:9)]
  vm <- lan[[t]][,c(10:18)]
  # parse variable thresholds
  cm <- as.data.frame(matrix(nrow = nrow(pm), ncol = ncol(pm)))
  for(c in 1:ncol(pm)){
    pc <- pm[,c]; 
    pc.adj <- as.numeric(p.adjust(pc))
    pc.filt <- pc.adj < pfilt
    vc.filt <- vm[,c] >= varfilt
    cm[,c] <- (pc.filt & vc.filt)
  }
  cgkeep <- apply(cm, 1, function(x){return((length(x[x == TRUE]) == 0))})
  lcgkeep[[t]] <- rownames(pm)[cgkeep]
}
lgr.filt <- list("adipose" = lgr[[1]][lcgkeep[[1]],],
                 "liver" = lgr[[2]][lcgkeep[[2]],])
```

## Get probe DNAm summary statistics and analyze variances

Calculate probe DNAm summary statistics. For each tissue, calculate the minima, 
maxima, means, medians, standard deviations, and variances of Beta-values 
across samples. Store results in the `lcg.ss` list.

```{r}
cnv <- c("min", "max", "mean", "median", "sd", "var")
bv <- getBeta(lgr.filt[[t]])
lbt <- lcg.ss <- list()
bsize = 100000
for(t in tv){
  lcg.ss[[t]] <- matrix(nrow = 0, ncol = 6)
  lbt[[t]] <- bt <- as.matrix(getBeta(lgr.filt[[t]]))
  blockst <- getblocks(slength = nrow(bt), bsize = bsize)
  for(bi in 1:length(blockst)){
    bc <- bt[blockst[[bi]],]
    newchunk <- t(apply(bc, 1, function(x){
      newrow <- c(min(x), max(x), mean(x), median(x), sd(x), var(x))
      return(as.numeric(newrow))
    }))
    lcg.ss[[t]] <- rbind(lcg.ss[[t]], newchunk)
    message(t, ";", bi)
  }
  colnames(lcg.ss[[t]]) <- cnv
}
```

Perform the main variance analyses with 2 strategies. This selects the 2,000 
probes with the highest group-specific variances.

First, use a single variance cutoff, or "absolute" quantile cutoff, for each 
group. List probes in the top 99th quantile variances for each tissue in the 
`lmvp.abs` object.

```{r}
qiv = seq(0, 1, 0.01)
qwhich = c(100)
lmvp.abs <- list()
lci <- list()
for(t in tv){
  cgv <- c()
  sa <- lcg.ss[[t]]
  sa <- as.data.frame(sa, stringsAsFactors = FALSE)
  q <- quantile(sa$var, qiv)[qwhich]
  lmvp.abs[[t]] <- rownames(sa[sa$var > q,])
}
```

Now select high-variance probes with binning for each tissue. Assign probes to 
1 of 10 bins using 0.1 mean Beta-value intervals. Select probes in the top 
99th variance quantiles for each bin, and store in `lmvp.bin`. 

```{r}
# binned quantiles method
qiv = seq(0, 1, 0.01) # quantile filter
qwhich = c(100)
bin.xint <- 0.1
binv = seq(0, 1, bin.xint)[1:10] # binned bval mean
# iter on ncts
lmvp.bin = list()
for(t in tv){
  sa <- as.data.frame(lcg.ss[[t]])
  cgv <- c()
  # iterate on betaval bins
  for(b in binv){
    bf <- sa[sa$mean >= b & sa$mean < b + bin.xint, ] # get probes in bin
    q <- qf <- quantile(bf$var, qiv)[qwhich] # do bin filter
    cgv <- c(cgv, rownames(bf)[bf$var > q]) # append probes list
  }
  lmvp.bin[[t]] <- cgv
}
```

With the variance analyses complete, filter the `lmvp.abs` and `lmvp.bin` 
probes by tissue specificity. Tissue-specific probes should only occur among 
high variance probes for a single tissue. Categorize probes as 
"tissue-specific" or "non-specific" using the `table` function to determine 
their frequency of occurrence across tissues.

```{r, eval = TRUE}
cgav <- c()
for(t in tv){
  txcg <- unique(c(lmvp.abs[[t]], lmvp.bin[[t]]))
  cgav <- c(cgav, txcg)
}
cgdf <- as.data.frame(table(cgav))
cgdf$type <- ifelse(cgdf[,2] > 1, "non-specific", "tissue-specific")
table(cgdf$type)
```

After filtering probes by tissue specificity, rank them by descending DNAm 
variance. Select 1,000 probes from `lmvp.abs`, then 1,000 non-overlapping 
probes from `lmvp.bin`, retain the 2,000 highest-variance probes by tissue 
in the `ltxcg` list.

```{r}
cgfilt <- cgdf$type == "non-specific"
cgdff <- cgdf[!cgfilt,]
ltxcg <- list()
for(t in tv){
  cgtx <- c()
  cgabs <- lmvp.abs[[t]]
  cgbin <- lmvp.bin[[t]]
  st <- as.data.frame(lcg.ss[[t]])
  # get t tissue specific probes
  filtbt <- rownames(st) %in% cgdff[,1]
  st <- st[filtbt,]
  # get top 1k t tissue specific abs probes
  filt.bf1 <- rownames(st) %in% cgabs
  sf1 <- st[filt.bf1,]
  sf1 <- sf1[rev(order(sf1$var)),]
  cgtx <- rownames(sf1)[1:1000]
  # get top 1k t tissue specific bin probes, after filt
  filt.bf2 <- rownames(st) %in% cgbin &
              !rownames(st) %in% rownames(sf1)
  sf2 <- st[filt.bf2,]
  sf2 <- sf2[rev(order(sf2$var)),]
  cgtx <- c(cgtx, rownames(sf2)[1:1000])
  ltxcg[[t]] <- cgtx
}
```

## Violin plots and heatmaps of probe set DNAm means and variances

First, get probe set DNAm summaries and annotation data.

```{r}
# filtered cg summaries
lfcg <- lapply(lcg.ss, 
  function(x){x <- x[rownames(x) %in% unique(unlist(ltxcg)),]})
# annotation subset
anno <- getAnnotation(gr) # save anno for cga
anno <- anno[,c("Name", "UCSC_RefGene_Name", "UCSC_RefGene_Group", 
  "Relation_to_Island")]
anno <- anno[rownames(anno) %in% unique(unlist(ltxcg)),]
# filtered beta values
lcgssf <- list()
for(t in tv){
  bv <- lcg.ss[[t]]
  bvf <- bv[rownames(bv) %in% ltxcg[[t]],]
  lcgssf[[t]] <- bvf
}
```

Use the `makevp()` helper function to make violin plots with horizontal bars at 
distribution medians. This function formats the data and calls `geom_violin` 
to make violin plots for DNAm fraction means and variances. Store plots in 
the `lvp` list, then display them vertically using the `grid.arrange` function 
from the gridExtra package.

```{r, eval = TRUE, fig.width = 3.8, fig.height = 4.5}
lvp <- makevp(lfcg, ltxcg)
grid.arrange(lvp[[1]], lvp[[2]], ncol = 1, bottom = "Tissue")
```

Tabulate the means of probe set statistics by tissue.

```{r, eval = TRUE}
tcgss <- matrix(nrow = 0, ncol = 6)
for(t in tv){
  datt <- apply(lcgssf[[t]], 2, function(x){
      round(mean(x), digits = 2)
  })
  mt <- matrix(datt, nrow = 1)
  tcgss <- rbind(tcgss, mt)
}
colnames(tcgss) <- colnames(lcgssf$adipose)
rownames(tcgss) <- tv
knitr::kable(t(tcgss), align = "c")
```

Next, prepare genome region heatmaps with 3 helper functions. These will 
tabulate probe abundances by region and use the probe Beta-value means to 
calculate the mean of means (left heatmap) and variance of means (right 
heatmap) by genome region type. 

First, define island and gene annotation groups from the manifest using 
`get_cga`. Next, get region-specific DNAm summaries with `hmsets` using a 
minimum region coverage of 2. This means values are calculated for regions 
with least 2 probes, and regions with less are assigned "NA" and greyed out. 
Make the 2 plots objects for means and variances with `hmplots()`, which wraps 
the `geom_tile` ggplot2 function. Finally, display plots horizontally with 
`grid.arrange`.

```{r, eval = TRUE, fig.width = 8.2, fig.height = 4.7}
cga <- get_cga(anno)
lhmset <- hmsets(ltxcg, lfcg, cga)
lhmplots <- hmplots(lhmset$hm.mean, lhmset$hm.var, lhmset$hm.size)
grid.arrange(lhmplots$hm.mean.plot, lhmplots$hm.var.plot, 
             layout_matrix = matrix(c(1, 1, 1, 1, 1, 2, 2), nrow = 1),
             bottom = "Tissue", left = "Annotation/Region Type")
```

Colors blue, white, and red represent low, intermediate, and high means and 
variances of region-specific mean Beta-values. Cell numbers show probe region 
quantities and are identical for both plots.

# Conclusions

This vignette described cross-study analyses using data objects accessible 
with `recountmethylation` and appearing in the manuscript @maden_human_2020. 
See the manuscript for more information about samples, quality metric signal 
patterns, and extended variability analyses. For details about data objects, 
consult the package `users_guide` vignette. Full code and helper function 
definitions are contained in the `data_analyses.R` companion script. For 
additional utilities to analyze DNAm data, consult the `minfi` and 
`wateRmelon` packages.

# Session info

```{r get_sessioninfo, eval = TRUE}
sessionInfo()
```

# Works Cited